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Chapter 1
Introduction

The value of data:

The fundamental unit of a civilization is people. People generate data through the processes they
perform: historians record events, authors write books, musicians compose music and researchers
generates studies. All of these processes performed by people generate data as a by-product.
This is also true of corporations. In the process of building products, hiring employees, buying
infrastructure, and polling customers, data is created as a by-product of these processes. A Savvy
company can transform the data from a byproduct to an asset by using the data when making
important decisions.

• Where to locate a new franchise
• What customers to target in marketing
• Where bottlenecks exist in a process
• How customers feel about a product

Fig. 1a- The value of data



Chapter 1 2

Data needs to be in a format that allows it to be used for qualitative, quantitative and statistical
analysis. In an ideal world, data is well organized, has no missing data values and is properly
formatted. However, in the real world, data is often unformatted or formatted in a way that is
not conducive to analysis. It may also be missing values for critical data variables, making it very
difficult or sometimes impossible to perform the necessary analysis.

Fig. 1b Well formatted data

Fig. 1c Poorly formatted data with missing values

The Role of a Data Scientist

Data scientists extract actionable information from data collected from potentially many different
sources. The top level data processes are listed below:

• Collecting the data in the raw form
• Data munging and data wrangling (the process of converting the original format to a more
useful format) to make it useful for analysis and visualization

• Cleansing the data to deal with missing values and weirdly formatted data
• Curation of the data in order to make it available for reuse and preservation

Big Data

Big data is a relatively new term that describes datasets that are so large and complex that traditional
data storage and processing methods can not be applied to these data sets. The following list are
examples of big data generation happening every 60 seconds.
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Every 60 seconds there are¹:

• Facebook users share nearly 2.5 million pieces of content.
• Twitter users tweet nearly 300,000 times.
• Instagram users post nearly 220,000 new photos.
• Apple users download nearly 50,000 apps.
• Email users send over 200 million messages.
• Amazon generates over $80,000 in online sales.

The above statistics is just a glimpse into the voluminous, ever-growing collection of data that is
available. The statistics below highlight why big data is a 21ˢ century problem.

• Every day over 2.5 quintillion bytes of data is being generated.
• 90% of the world’s data has been generated over the past two years.
• Data from multiple sources is being integrated into single massive data sets.

Due to the complexity involved with the term itself there is no single agreed upon definition of “Big
Data”, below is one definition that highlights the structure and the output of big data:

Big data is the integration of large amounts of multiple types of structured and
unstructured data into a single dataset that can be analyzed to gain insight and new
understanding of an industry, business, the environment, medicine, disease control,
science, and human interactions and expectations.

Examples of Big data:

• The Large Hadron Collider would generate 5 ×1020bytes per day if all of its sensors were
turned on, almost 200 times more than all other data sources in the world combined.

• The Square Kilometer Array radio telescope is expected to collect 14 exabytes of data per day
for analysis.

• Walmart generates over 1 million customer transactions per hour that are curated in a multi-
petabyte database for trend analysis.

¹https://aci.info/2014/07/12/the-data-explosion-in-2014-minute-by-minute-infographic/

https://aci.info/2014/07/12/the-data-explosion-in-2014-minute-by-minute-infographic/
https://aci.info/2014/07/12/the-data-explosion-in-2014-minute-by-minute-infographic/
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Characteristics of Big Data:

Even though there is not one agreed upon definition of “Big Data”, there are certain characteristics
that allow you to identify big data.

• Very large, distributed aggregations of loosely structured data that is often incomplete
• In excess of multiple petabytes or exabytes of data
• Billions of records about people or transactions
• Loosely structured and often distributed data
• Flat schemas with few complex interrelationships
• Time series data containing time-stamped events
• Connections between data elements that must be probabilistically inferred through machine
learning

• Security concerns of personal data
• Data can contradict itself over time and may have missing data values

Larger datasets allow for more detailed analysis and application to social sciences, biology, pharma-
cology, business, marketing and more. Data is everywhere and a lot of it is free. Organizations don’t
necessarily have to build their own massive data repositories before starting with big data analytics.
Steps taken by many companies and government agencies to put large amounts of information into
the public domain have made large volumes of data accessible to everyone.

Some of the important sources of data are:

Web Behavior and content:

• There are nearly five billion web pages, most of them are collecting data and statistics on its
utility as well as its visitors

• The collected data includes network traffic, site and page visits, page navigation, page searches
• This data can be used for marketing purpose, such as generating advertisements based on your
recent purchases

User Generated Content:

• Also known as “Internet trail” or “Net trail”
• Content generated by millions of users on social media, including Facebook, Twitter, Insta-
gram, blogs, YouTube, forums, wikis, and so forth

• This data can an be used to create an online profile of any online user and the analysis of such
data can be highly useful for targeting campaigns
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Activity Generated data:

• Computer and mobile device log files
• Includes website tracking information, application logs, sensor data such as check-ins and
location tracking

• This data can be used to generate location specific (geographic) marketing campaigns

RFID Data:

• Radio Frequency Identifiers
• These are tags for tracking merchandise, shipments, mobile payments, sports performance
measurement, and automated toll collection

• This data can be used for tracking objects across the globe.

Geo-Data:

• GPS tracking data generated by mobile devices
• This data is another source for tracking the movement of equipment, vehicles, and people

Environmental Data:

• Weather conditions
• Traffic movements
• Tidal movements
• Seismic activity

Organizational Transactional Data:

• Transactional activities such as purchases, registration, manufacturing

Research Data:

• Social science data, e.g., census, polls
• Health care data
• Education, law and order, economic activity, agriculture, food production
• “Big Data” such as radio telescopes, particle physics

Big data is poised to offer tremendous insights, but with the terabytes and petabytes of data pouring
into organizations today, traditional architectures are not up to the challenge to storing, collecting
and analyzing this large amount of data. There are many challenges that come along with big data:
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Analysis:

With the enormous amount of data available, the major challenge is to leverage the value that big
data have to offer. Big data requires complex analysis within a relatively short time span, since it
is used to detect and track trends, helping people make more informative decisions. Some analysis
techniques applied to big data are:

• A/B Testing
• Information visualization
• Machine Learning Techniques
• Time Series Analysis

Collection:

• Data is not free, even when you do not pay for it. You still need to pay for the storage
mechanism as well as the computational system used to analyze the data

• Data is in a format not conducive to analysis. Work needs to be expended to transform the
data into an amenable format.

• Data contains missing values or bad entries. The quality of the data needs to be measured and
protocol needs to be defined for dealing with invalid, inaccurate and missing data values.

• Data is not downloadable. Many websites provide mechanisms for interacting with the data
records one by one, however gathering all data records is not provided. You will need to write
code that scrapes the data from the website, if it is not provided as a simple file download.

Storage:

Storage of such enormous data is a challenge in itself. There is a need for the system to be able to
deal with terabytes/petabytes of data on a daily basis. With big data a company must have a plan
to deal with disk failures.

Curation:

Curation of data deals with addressing the quality of data. Data’s penultimate value occurs when it
is both timely and accurate. When data is timely and accurate it can assist corporate decision making
processes. On the other hand, poor information quality can be costly. For example, an infographic
from lemonly.com estimates that, on average, bad information costs businesses up to 10 - 25 percent
of revenue per year. Same study pegs the loss at over $3 trillion annually in the U.S. alone.

Search and retrieval:

Timely retrieval of meaningful data from the entire dataset is one of the most important challenges.
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Sharing/Transfer:

Sharing/Transferring data is another concern as there is no platform easily available which allows
transfer of such huge data. Organizations tend to invest a lot of money to design special architectures
and infrastructures to facilitate data sharing/transfer.

Visualization:

Visualization helps a user reason and analyze the data. It provides a mechanism for extracting useful
information as well as a mechanism for defining an analysis plan.

Privacy:

Data security is a major concern especially when it comes to credit card data, personal ID
information, health information or other sensitive assets. Protecting the privacy of valuable data
can be a challenging feat. It requires both hardware and software solutions.

Storing Big Data:

Traditional data storage technologies including text files, XML, and relational databases reach their
limits when used to store very large amounts of data. Furthermore, the data that is needed for
analysis includes not only text and numeric data but unstructured data, such as text files, video,
audio, blogs, sensor data, geospatial data among others. Due to these hurdles storing big data
becomes challenging. A new crop of databases have been developed to fill the needs of big data,
they are called NoSQL (Not Only SQL) databases. The collection of NoSQL databases allows data
modelers to use other data models beyond the relational data model. The relational data model limits
all data concepts to the two dimensional table, where the rows represent an entity and the columns
represent an attribute or a feature of the entity. The NoSQL databases do not incorporate the two
dimensional table model that relational database management systems (RDBMS) promote. NoSQL
databases have the ability to deal with a large amount of data and can accommodate unstructured
data easily. Fetching data fromNoSQL databases provides remarkable speed over relational database
since the data to answer a specific user question is stored to optimize specific user operations.

6 V’s of Big Data

Volume

Volume is one of the core defining attributes of “Big Data”. Big Data implies enormous amounts of
structured and unstructured data that is generated by social and sensor networks, transaction and
search history, and manual data collection. For example- 100 terabytes of data is uploaded daily to
Facebook; Akamai analyzes 75 million events a day to target online ads; Walmart handles 1 million
customer transactions every single hour. These are volumes that are new for the 21ˢ century.
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Variety

Data comes from a variety of sources and contains both structured and unstructured data. There are
a variety of supported data types; big data is not restricted to simply numbers and short text fields,
but may also include images, emails, text messages, web pages, blog entries, documents, audio, video,
and time series.

Velocity

The flow of data that needs to be stored and analyzed is continuous, leading to a high rate or
high velocity of data creation, data flow, and data consumption. Human interactions, business
processes, machines, and networks generate data continuously and in enormous quantity. Here
are some examples of big data consumption: every minute of every day, we upload 500 hours of
video on Youtube², send over 204 million emails³ and send 350,000 tweets⁴. Even though the data
velocity date is high, it is important that the data is analyzed in real-time in order to gain a strategic
advantage. Real time processing allows companies to do things like display personalized ads on the
web pages you visit, that are based on your recent searches, web page viewing and purchase history.
If the velocity rate is too high to allow real time processing, sampling can help mitigate some of the
problems associated with large data volume and velocity.

Veracity

Data veracity characterizes the inherent noise, biases, abnormalities, and mistakes present in
virtually all data streams. “Dirty data” presents a significant risk as analysis based on this data may
be incorrect or misleading. Data must be cleaned in real-time and processes must be established
to keep “dirty data” from accumulating. A data scientist needs to work as a “data janitor” before
analyzing the data.

Validity

While the data may not be “dirty”, biased, or abnormal, and it may not be valid for the intended use.
Valid data for the intended use is essential to making decisions based on the data.

Volatility

Volatility characterizes the degree to which data changes over time. Decisions and analysis are based
on data that has an “expiration date”. Data scientists must define at what point in time a data stream
is no longer relevant and cannot be used to make an informed decision.

²http://www.reelseo.com/hours-minute-uploaded-youtube/
³http://mashable.com/2014/04/23/data-online-every-minute/#77si5G_0YSqg
⁴http://www.internetlivestats.com/twitter-statistics/

http://www.reelseo.com/hours-minute-uploaded-youtube/
http://www.reelseo.com/hours-minute-uploaded-youtube/
http://mashable.com/2014/04/23/data-online-every-minute/#77si5G_0YSqg
http://www.internetlivestats.com/twitter-statistics/
http://www.reelseo.com/hours-minute-uploaded-youtube/
http://mashable.com/2014/04/23/data-online-every-minute/#77si5G_0YSqg
http://www.internetlivestats.com/twitter-statistics/
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Additional V’s

Viscosity

Viscosity measures the data’s resistance to flow through the data processes. It also can be used
to measure the difficulty a user encounters when navigating to a specific data element within the
dataset. Technologies to deal with viscosity include improved streaming, agile integration bus, and
complex event processing.

Virality

Virality measures how quickly data is spread and shared to each unique node in the data network.
Time is an important characteristic along with the rate of proliferation. High virality of data can
provide companies with instant insights into the target population segments for a specific marketing
campaigns.

Learning Checkpoint

Concepts Pharma has built a data repository that collects self-reported eating habits of clinical trial
participants through a mobile habit. The translation medicine group is using the data to determine
if the drug in the trial is causing digestive issues when taken with certain food groups. Which of the
V’s should be of most concern to them?

1. Veracity
2. Volume
3. Volatility
4. Velocity
5. Variety

Answer at the end of chapter

Planning A Big Data project

Developing a “Big Data” project requires thoughtful planning. The project must have clearly defined
objectives and “questions” that need to be answered through analysis. The project plan must also
address where the data will come from, the quality of the data, the processes for collecting, cleaning,
and loading the data, and the infrastructure used to house the data. Finally, the project plan must
state how the data is expected to be analyzed and how data will be kept free of identifiable properties
and keep personal data confidential. A data scientist or data analyst, planning a big data project
should address:
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• Objectives
• Data
• Process
• Infrastructure
• Analytics
• Governance and Privacy

Objectives

Objectives need to be clearly defined with a proper outline of every step of the project. A data
scientist needs to answer the questions like:

• What is the purpose of the data project?
• How is the data going to be used?
• What is the business or organizational value of the data project?

Data

When identifying the data, the following questions need to be answered:

• What data needs to be collected?
• Where will the data come from?

– Internal systems?
– Social networks?
– External data sources?

• What is the structure of the data?
– Quantitative or qualitative?

• What is the quality of the data?

Processes

When defining the data processes, the following questions need to be answered:

• How will the data be collected?
• How frequently will the data be collected?
• How will the data be cleaned?
• How will the data be loaded and transferred?
• What kind of analysis needs to be done?
• Will the system be able to provide real-time analysis?
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Infrastructure

When choosing the system’s infrastructure, the following questions need to be answered:

• Where will the data be stored?
• What database or data store will be needed based on the volume, complexity, type, and
required access of the data?

• What hardware is needed to support responsive access to the data?
• Who will manage the data store?
• Who will supply the data store?

Analytics

When identifying themethods used to analyze the data, the following questions need to be answered:

• How will the data be presented?
– Tables?
– Visualizations?

• What predictive models will be built? How will these models be evaluated?
• How will the data from different sources be combined?
• What skills are needed to do the analysis?
• What programs or applications need to be built or purchased?

Governance and Privacy

When defining data access policies and availability a company must consider the following:

• Organizations must be transparent in how they manage personal data and how they use it.
• Government regulations may limit which data can be collected and how that data can be
stored, transferred, accessed or used.

• Organizations must protect private data and not allow persons to be “identifiable”.
• Organizations must follow governmental rules such as the data protection law, the Health
Insurance Portability and Accountability Act (HIPAA),

Checkpoint Answer
Concepts Pharma has built a data repository that collects self-reported eating habits
of clinical trial participants through a mobile habit. The translation medicine group is
using the data to determine if the drug in the trial is causing digestive issues when taken
with certain food groups. Which of the V’s should be of most concern to them?

1. Veracity
2. Volume
3. Volatility
4. Velocity
5. Variety
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Basic R Programming

Before we start with the basics of R let’s make sure you have the latest version of R. To install R on
your computer go to the home website of R and follow the instructions there:

http://www.r-project.org/⁵

We recommend the use of Rstudio, a powerful IDE for R. Rstudio is also free and can be downloaded
from their home website:

http://www.rstudio.com/⁶

Why R?When we deal with big data, we face many challenges, R provides a perfect platform to deal
with these challenges. R provides a powerful environment which runs on several platforms, it can
process an enormous amount of data using one statement ormillion chunks of data one by one. R also
allows you to deal with bad or missing data and it makes reshaping and restructuring of data easy.
Data manipulation becomes a lot easier with the different string and date manipulation packages. R
provides packages that provide connectivity to many databases. R also provides many packages that
provide statistical, graphical, and machine learning functionality. It also allows a program to call a
function written in another programming language. This allows a programmer to take advantage of
the prior work written in other programming languages within an R program. Many people leverage
the programs they have written in Perl within an R program.

R objects

Data is stored as objects in R. Objects are created by:

• Reading data from an external file
• Retrieving data from a URL
• Creating an object directly from the command line
• Instantiating an object from within a program

⁵http://www.r-project.org/
⁶http://www.rstudio.com/

http://www.r-project.org/
http://www.rstudio.com/
http://www.r-project.org/
http://www.rstudio.com/
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Expressions

R can be directly used to solve simple or complex expressions. The following is a log from the R shell.
The ‘>’ is the command prompt for the R shell. You can see you can type in arithmetic expressions
and the shell evaluates them. You can also define variables as well as define character text strings.
If you attempt to run any line of code from this book, you must remove this > symbol from your
code. For example, line 1 would be entered as: 12*21. Also, the [1] expression in the log is a unique
number for the records in the result set.

1 > 12*21

2 [1] 252

3

4 # [1] in the above answer indicates the index of your results.

5 # R always shows the result with index for each row.

6

7 > ((2^3)*5)-1

8 [1] 39

9

10 > sqrt(4)* exp(2)

11 [1] 14.77811

Note : sqrt and exp are built-in functions in R for finding Square root and exponential
respectively.

Assignment

Assignment of a value to a variable can be done in 2 ways in R:

1 #first way

2 > x=12

3 > x

4 [1] 12

5

6 > word = "Hello"

7 > word

8 [1] "Hello"

9

10 #second way

11 > x <- 12

12 > x

13 [1] 12

14
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15 > word <- "Hello"

16 > word

17 [1] "Hello"

The second method is more frequently used by R users.

The rules for naming an object are the following. Object names are case-sensitive and cannot contain
spaces or special characters. An object identifier must start with a letter, but may contain any letter
or digit thereafter.

It’s a good coding practice to give a sensible name to a variable instead of just using random alphabet
like x,y,z. Another good coding practice involves camelCasing a variable name i.e. instead of using
an underscore to separate the two words that compose a name, make the first letter of the second
word uppercase for example: squareRoot, graphData, currentWorkingDirectory.

Note that R is case sensitive which means that R treats the object names “AP” and “ap” as different
objects. Accessing files is also most commonly case sensitive, so there’s a difference between
“AirPassengers.txt” and “airpassengers.txt”.

Functions

R functions can be invoked by their name. Details of any built-in functions or dataset can be accessed
by adding a question mark (?) in front of the function or dataset name.

1 > ?sum

Fig 2a: Sum function
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1 > sum(1,2,30)

2 [1] 33

3

4 > nums <- c(1,2,3,4,5,6,7)

5 > mean(nums)

6 [1] 4

7 #Concatenating numeric or character values using the built-in c()

8 #function results in an indexable array

User defined functions are an important part of programming in R. They allow code to be reused,
we will discuss more user-defined functions at the end of this chapter.

1 > fraction<-function(x,y){ #function definition (this is a comment)

2 + result <-x/y #function body

3 + print (result) #function body

4 + }

5

6 # Plus sign is a part of the code in console once the code is executed

7 # which tells the computer that this code is in continuation with the above line.

8

9 # If you are writing this code to run do not write plus signs.

10

11 > fraction(3,2) ##function call

12 [1] 1.5

Combine function

Combining numeric or character values using the built-in c() function results in an indexable 1
dimensional array. Operations can be applied to each element of an array by applying the operation
to the array (see line 12 below in the R log session)

1 > array<-c(1,2,3,4,5,6,7,8)

2 > array

3 [1] 1 2 3 4 5 6 7 8

4 > array[2]

5 [1] 2

6

7 > array + 10

8 [1] 11 12 13 14 15 16 17 18

9 > array

10 [1] 1 2 3 4 5 6 7 8

11
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12 > fraction <- array/2

13 > fraction

14 [1] 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

15

16 > sum <- fraction + array

17 > sum

18 [1] 1.5 3.0 4.5 6.0 7.5 9.0 10.5 12.0

Sequences and subscripting

Sequencing or range of numbers can be selected in R using “:” operator.

1 > 1:10

2 [1] 1 2 3 4 5 6 7 8 9 10

3

4 > 5:12

5 [1] 5 6 7 8 9 10 11 12

6

7 > 3:-3

8 [1] 3 2 1 0 -1 -2 -3

9

10 > 2*1:5

11 [1] 2 4 6 8 10

12

13 > 2*(1:5)

14 [1] 2 4 6 8 10

15

16 > array<-c(1:25)

17 > array

18 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Advanced sequencing can be done using built-in R function called seq(). seq() function is internally
creating a data object, an object that does not have a name. It is stored in .Last.value object.



Chapter 2 17

1 # Increment by 3

2 > seq(from=5,to=15,by=3)

3 [1] 5 8 11 14

4

5 # divide in 6 parts

6 > seq(from=1,to=10,length=6)

7 [1] 1.0 2.8 4.6 6.4 8.2 10.0

8

9 # divide in 4 parts with decrement of 2.5

10 > seq(from=100,length=4,by=-2.5)

11 [1] 100.0 97.5 95.0 92.5

12

13 # divide in parts equal to the vector range

14 > x <-10:20

15 > seq(from=50,to=52,along=x)

16 [1] 50.0 50.2 50.4 50.6 50.8 51.0 51.2 51.4 51.6 51.8 52.0

Sequences are vectors that are essentially 1 dimensional arrays and particular elements of a sequence
can be extracted with the [] subscript operator. Subscripting in R is more flexible than many other
programming languages.

1 > # extract the 3rd element

2 > x[3]

3 [1] 12

4

5 > # extract all BUT the 3rd element

6 > x[-3]

7 [1] 10 11 13 14 15 16 17 18 19 20

combine function c() can be used in conjunction with sequencing to retrieve a subset of elements.

1 > arr<-c(10:20)

2 > arr

3 [1] 10 11 12 13 14 15 16 17 18 19 20

4

5 #retrieve the 5th and 7th elements

6 > arr[c(5,7)]

7 [1] 14 16

8

9 #retrieve all but the 3rd, 5th, and 9th elements

10 > arr[c(-3,-5,-9)]

11 [1] 10 11 13 15 16 17 19 20

Specific elements that meet a logical criterion can be selected using subscripting.
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1 > arr

2 [1] 10 11 12 13 14 15 16 17 18 19 20

3

4 #extract all elements greater than 14

5 > arr[arr>14] #returns the values within a list that satisfies a condition

6 [1] 15 16 17 18 19 20

7

8 > logical<-c(T,T,F,T,F,T,F)

9 > logical

10 [1] TRUE TRUE FALSE TRUE FALSE TRUE FALSE

11

12 > logical[logical==T]

13 [1] TRUE TRUE TRUE TRUE

14

15 > which(logical==T)

16 [1] 1 2 4 6

17 # Enclosing this condition in a which function will return the

18 # index of satisfied condition

Listing and Deleting objects

The great strength of R lies in the flexibility it provides. The R shell overloads the definition of the
ls() and rm() functions from the Unix shell command.

1 > ls()

2 [1] "a" "b" "c" "r" "word" "x" "z"

3 > rm("word")

4 > ls()

5 [1] "a" "b" "c" "r" "x" "z"

6 #remove all objects from current session

7 rm(list=ls())

Comments

Comments are an important part of any program/code. R code should be commented so that you
or others understand the intent of the commands and functions. Any text after a hash mark (#) is a
comment in the code and is ignored by R.

Modes and Classes of objects

Everything in R is stored in a data object. An R object has a mode and a class. The mode represents
type of values that can be stored in it. The class represents the structure of the object.
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Fig. 2b Storage mechanism in R

There are specific rules for naming an object/variable in R:

• Variable names must start with a letter followed by upper and lower case letters, digits, period,
and underscore (_)

• The following characters are not allowed in a variable name. characters: #, @, &, %, ˆ, $, ∼, *

Variable names examples: rangeValue, i3, open_date

Every R object is a list or a vector. A vector contains elements that have the same mode. A list
allows the data elements to have different modes. A list object has a class = ‘list’. A list is considered
a recursive data object since an element in a list may be a list.

• Mode -Numeric, character, logical
• Class

Mode

The mode is defined in R as a mutually exclusive classification of objects according to their basic
structure. An object has only one mode. The values of mode are:

• numeric
• complex
• logical
• character
• raw

Themode() function returns the mode of an object. The modes of two combining objects must match
when they are combined in an operation.
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1 > num.vec<- c(1,2,3,4,5)

2 > mode(num.vec)

3 [1] "numeric"

4

5 > logical.vec<- c(T,F,F,T,F,T,T)

6 > mode(logical.vec)

7 [1] "logical"

8

9 > char.vec<- c("AA","BB","cc","dd")

10 > mode(char.vec)

11 [1] "character"

R follows specific rules for determining the mode of a combined object. It chooses the most
accommodating data type when determining the object’s mode. For example, R stores numeric
objects as either 32-bit integers or double-precision floating point numbers. If an R object contains
both numeric and logical elements, the mode of the objects is numeric and all logical elements are
converted to numeric values with TRUE = 1 and FALSE = 0. If an R object contains character and
numeric or logical elements, it is converted to a character mode. See the log below for an example.

1 > nl<-c(1,3,TRUE,9,FALSE)

2 > nl

3 [1] 1 3 1 9 0

4

5 > mode(nl)

6 [1] "numeric"

7

8 > cnl<-c(1,TRUE,"x")

9 > cnl

10 [1] "1" "TRUE" "x"

11

12 > mode(cnl)

13 [1] "character"

Themode of any object can be determined by is.modeName() function like is.numeric() is.character().
These functions return True or False as output. Functions are also treated as objects in R.
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1 > is.numeric(num.vec)

2 [1] TRUE

3

4 > is.numeric(logical.vec)

5 [1] FALSE

6

7 > is.logical(logical.vec)

8 [1] TRUE

9

10 > mode(mean)

11 [1] "function"

12

13 > mode(sum)

14 [1] "function"

Class

The class of an object determines what can be done with the object, while the mode indicates the
values that can be stored in the memory location. The class is accessed through the class() function.

If an object has no class assigned to it, then by default, its class is considered the same as the mode
of that object.

1 > class(mean)

2 [1] "function"

3

4 > class(num.vec)

5 [1] "numeric"

6

7 > x<- 1:16

8 > x

9 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

10

11 > mode(x)

12 [1] "numeric"

13 > class(x)

14 [1] "integer"

15

16 > dim(x)<- c(4,4)

17 > x

18 [,1] [,2] [,3] [,4]

19 [1,] 1 5 9 13

20 [2,] 2 6 10 14
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21 [3,] 3 7 11 15

22 [4,] 4 8 12 16

23

24 > mode(x)

25 [1] "numeric"

26

27 > class(x)

28 [1] "matrix"

The mode of an object can be changed using mode conversion functions and the process is called
“coercion”. While some coercions are automatic, specific coercions can be forced using the family
of as.mode() functions:

• as. numeric()
• as.logical()
• as.character()
• as.data.frame()
• as.list()

1 > n.vec<-c(-99,0,99)

2 > l.vec<-as.logical(n.vec)

3

4 > n.vec

5 [1] -99 0 99

6

7 > l.vec

8 [1] TRUE FALSE TRUE

9

10 > mode(l.vec)

11 [1] "logical"

Not all values can be coerced from one data type to another, when a value cannot be coerced, it is
replaced with NA (not available).
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1 > char.vec<- c("1","2","3","dd")

2 > mode(char.vec)

3 [1] "character"

4

5 > num<-as.numeric(char.vec)

6 Warning message:

7 NAs introduced by coercion

8 > num

9 [1] 1 2 3 NA

10 # R cannot convert "dd" to any number on its own and hence NA is introduced

R Objects

The following is a list of the R data objects:

• Vector
• Factors
• Dataframes
• Matrices
• Arrays
• Lists

Vector

The vector is the basic storage type in R. A vector holds a collection of values of the same type:
numeric, logical, character. A vector is treated like an array and its elements can be accessed by
indexing.

1 > num.vec<- c(1,2,3,4,5)

2 > num.vec

3 [1] 1 2 3 4 5

4

5 > logical.vec<- c(T,F,F,T,F,T,T)

6 > logical.vec

7 [1] TRUE FALSE FALSE TRUE FALSE TRUE TRUE

8

9 > char.vec<- c("AA","BB","cc","dd")

10 > char.vec

11 [1] "AA" "BB" "cc" "dd"
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Factor

The factor type is used to encode categorical data values. While a vector can have any number of
distinct elements, a factor value is limited to its categories. Factors are essential for certain statistical
hypothesis tests and models. Factors are stored as numbers internally.

Factors are created using the factor() function which requires a vector of category values as input.

1 > week <- c("Monday","Tuesday","Wednesday","Thursday",

2 + "Friday","Saturday","Sunday")

3 > fac <- factor(week)

4 > fac

5 [1] Monday Tuesday Wednesday Thursday Friday Saturday Sunday

6 Levels: Friday Monday Saturday Sunday Thursday Tuesday Wednesday

7

8 # When you create a factor from a data object you can provide a default

9 # ordering for the values. If you do not provide an ordering it will use

10 # the canonical ordering for the data type so ascending order for numeric

11 # data and alphabetical ordering for character data. Since you probably do

12 # not want to order the days of the week alphabetically, here is an example

13 # of specifying the ordering sequence with the factor function

14

15 > fac2 <- factor(week,levels = c("Monday","Tuesday","Wednesday",

16 + "Thursday","Friday","Saturday","Sunday"),ordered=TRUE)

17

18

19 > labels(fac)

20 [1] "1" "2" "3" "4" "5" "6" "7"

21

22 > levels(fac)

23 [1] "Friday" "Monday" "Saturday" "Sunday" "Thursday" "Tuesday"

24 [7] "Wednesday"

25

26 > levels(fac2)

27 [1] "Monday" "Tuesday" "Wednesday" "Thursday" "Friday" "Saturday"

28 [7] "Sunday"

While factors are stored as unique numeric labels they are not, in fact, of numeric type. Therefore,
factors cannot be used in numeric operations.
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1 > mean(fac)

2 [1] NA

3 Warning message:

4 In mean.default(fac) : argument is not numeric or logical: returning NA

Adding or dropping levels in a factor variable, can be tricky. We cannot directly add a new entry to
a factor like indexed vector. We will have to first add a new level to a factor variable and then we
can add labels as an indexed vector for that particular level.

1 # Wrong method. Level Noday doesn't exist

2

3 > fac[8] <- "Noday"

4 Warning message:

5 In `[<-.factor`(`*tmp*`, 8, value = "Noday") :

6 invalid factor level, NA generated

7

8 > fac

9 [1] Monday Tuesday Wednesday Thursday Friday Saturday Sunday <NA>

10 Levels: Friday Monday Saturday Sunday Thursday Tuesday Wednesday

11

12

13 # Correct way. Make a level Noday first.

14

15 > fac<- factor(fac, levels = c(levels(fac), "Noday"))

16 > fac[8] <- "Noday"

17 > fac

18 [1] Monday Tuesday Wednesday Thursday Friday Saturday Sunday Noday

19 Levels: Friday Monday Saturday Sunday Thursday Tuesday Wednesday Noday

20

21 > fac[9]<- "Noday"

22 > fac

23 [1] Monday Tuesday Wednesday Thursday Friday Saturday Sunday Noday

24 [9] Noday

25 Levels: Friday Monday Saturday Sunday Thursday Tuesday Wednesday Noday

Dropping levels can be done similarly by just removing the levels and refactoring the levels.
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1 > fac <- fac[fac != "Noday"]

2 > fac

3 [1] Monday Tuesday Wednesday Thursday Friday Saturday Sunday

4 Levels: Friday Monday Saturday Sunday Thursday Tuesday Wednesday Noday

5

6 #Refactoring the levels. if there is no value for Noday then,

7 #refactoring will remove that label

8 > new.fac<- factor(fac)

9 > new.fac

10 [1] Monday Tuesday Wednesday Thursday Friday Saturday Sunday

11 Levels: Friday Monday Saturday Sunday Thursday Tuesday Wednesday

Data Frame

A data frame is a tabular arrangement of rows and columns. The columns are vectors and/or factors,
and are similar to the layout of a spreadsheet. The columns represent data attributes while the rows
represent records with values for the attributes. Two or more vectors can be combined to make a
data frame given that they are of the same length. A data frame is created with the data.frame()
function requiring the different vectors as input. The input vectors represent the columns of the
tabular arrangement.

1 > var1 <-c("BOS","EWR","PBI","CVG") #creates a vector with 4 string elements

2 > var2 <-c(14,19,0,12) #creates a vector with 4 numeric element

3 > var3 <-factor(c("Above","Above","Normal","Below"))

4 > snow.frame<-data.frame(var1,var2,var3)

5

6 #columns must have same length

7 > snow.frame

8 var1 var2 var3

9 1 BOS 14 Above

10 2 EWR 19 Above

11 3 PBI 0 Normal

12 4CVG 12 Below

Columns can be directly accessed using the $ as the column operator: frame$col. The number
prefixed on each row are not part of the data frame but part of the output. It allows you to identify
the beginning of each data row.
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1 > snow.frame$var1

2 [1] BOS EWR PBI CVG

3 Levels: BOS CVG EWR PBI

4 > snow.frame$var2

5 [1] 14 19 0 12

6

7 # Different ways of accessing columns

8 > snow.frame$var1

9 [1] BOS EWR PBI CVG

10 Levels: BOS CVG EWR PBI

11

12 > snow.frame[["var1"]]

13 [1] BOS EWR PBI CVG

14 Levels: BOS CVG EWR PBI

15

16 > snow.frame[,1]

17 [1] BOS EWR PBI CVG

18 Levels: BOS CVG EWR PBI

Matrices

A matrix is a two-dimensional arrangement of data similar to a data frame but unlike a data frame
its elements must be of the same data type. To perform mathematical operations on matrices, its
elements must be numeric. When a matrix is printed the output contains the name of the columns
in the first row. Each row element is prefixed with a row number.

1 > mat<- matrix(c(1:10), nrow=5, ncol=4, byrow= TRUE)

2 > mat

3 [,1] [,2] [,3] [,4]

4 [1,] 1 2 3 4

5 [2,] 5 6 7 8

6 [3,] 9 10 1 2

7 [4,] 3 4 5 6

8 [5,] 7 8 9 10

The function t() creates a transpose of a matrix by interchanging its columns and rows.
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1 > mat

2 [,1] [,2] [,3] [,4]

3 [1,] 1 2 3 4

4 [2,] 5 6 7 8

5 [3,] 9 10 1 2

6 [4,] 3 4 5 6

7 [5,] 7 8 9 10

8 > t(mat)

9 [,1] [,2] [,3] [,4] [,5]

10 [1,] 1 5 9 3 7

11 [2,] 2 6 10 4 8

12 [3,] 3 7 1 5 9

13 [4,] 4 8 2 6 10

Two matrices can be multiplied using the %*% matrix multiplication operator.

1 > t(mat)%*%mat

2 [,1] [,2] [,3] [,4]

3 [1,] 165 190 125 150

4 [2,] 190 220 150 180

5 [3,] 125 150 165 190

6 [4,] 150 180 190 220

Arrays

An array is a multi-dimensional data structure, while matrices and data frames are two-dimensional
row/column arrangements ;a vector is a single dimension data structure. The log below creates a
three dimensional array called twoDArray. Notice the way the three dimensional object is printed.
It prints the first two by two array, followed by the second two by two array, followed by the third
two by two array.

1 > twoDArray <-array(dim=c(2,2,3))

2 > twoDArray[,,1] <-rnorm(2)

3 > twoDArray[,,2] <-rnorm(2)

4 > twoDArray[,,3] <-rnorm(2)

5

6 > twoDArray

7 , , 1

8 [,1] [,2]

9 [1,] 0.5370590 0.5370590

10 [2,] 0.5897154 0.5897154

11 , , 2
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12 [,1] [,2]

13 [1,] 0.86947620 0.86947620

14 [2,] -0.05387594 -0.05387594

15 , , 3

16 [,1] [,2]

17 [1,] -1.4424228 -1.4424228

18 [2,] -0.9510549 -0.9510549

Array elements are accessed through subscripting:

1 > a[1,1,1]

2 [1] 0.537059

3 > a[1,1,2]

4 [1] 0.8694762

Lists

A list object is a generic collection that can store objects of any type, including vectors, matrices,
arrays, and data frames. This is essentially a bag data structure.

1 > l<- list(var1,snow.frame,mat,a)

2 > l

3 [[1]]

4 [1] "BOS" "EWR" "PBI" "CVG"

5

6 [[2]]

7 var1 var2 var3

8 1 BOS 14 Above

9 2 EWR 19 Above

10 3 PBI 0 Normal

11 4 CVG 12 Below

12

13 [[3]]

14 [,1] [,2] [,3] [,4]

15 [1,] 1 2 3 4

16 [2,] 5 6 7 8

17 [3,] 9 10 1 2

18 [4,] 3 4 5 6

19 [5,] 7 8 9 10

20

21 [[4]]

22 , , 1
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23

24 [,1] [,2]

25 [1,] -1.1241404 -1.1241404

26 [2,] -0.5584957 -0.5584957

27

28 , , 2

29

30 [,1] [,2]

31 [1,] -1.272635 -1.272635

32 [2,] 1.272189 1.272189

33

34 , , 3

35

36 [,1] [,2]

37 [1,] -1.729171 -1.729171

38 [2,] -0.412405 -0.412405

39

40

41 #accessing elements

42

43 > l[[3]]

44 [,1] [,2] [,3] [,4]

45 [1,] 1 2 3 4

46 [2,] 5 6 7 8

47 [3,] 9 10 1 2

48 [4,] 3 4 5 6

49 [5,] 7 8 9 10

50 > l[3]

51 [[1]]

52 [,1] [,2] [,3] [,4]

53 [1,] 1 2 3 4

54 [2,] 5 6 7 8

55 [3,] 9 10 1 2

56 [4,] 3 4 5 6

57 [5,] 7 8 9 10

The code below shows modification of a list variable, by directly accessing an individual element of
the list variable and making the appropriate modifications.
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1 > l[[1]][1] <- "MA"

2 > l[[1]]

3 [1] "MA" "EWR" "PBI" "CVG"

User-defined functions

R is a procedural programming language. It provides many built-in functions as illustrated in this
chapter. User-defined functions allow a programmer to reuse code within a program. They are the
building blocks of a well defined program. Functions modularize your program. Functions typically
have three parts: a function definition, a function body and a function call. The following line 1
through 8 defines a function called getStats. Line 11 is an example of calling the function getStats.

1 > getStats<- function(data) #function definition

2 { # Start of function body

3 + meanData<-mean(data)

4 + stdDev<-sd(data)

5 + medianData<-median(data)

6 +

7 + return(c(meanData,stdDev,medianData))

8 + } # end of function body

9

10 > data<-c(12,34,54,65,25,75,90,23,12,45,65,76)

11 > stats<-getStats(data) #function call

12 > stats

13 [1] 48.00000 26.70036 49.50000

In the above code, the function definition is the section of the code where the function is named and
the arguments are declared. i.e. the first line of the function. According to this function definition,
the function takes one argument during a function call.

The function body is the general logic or segment of code inside the function. The segment of code
inside the function has a local scope, this means any variables declared within the function are only
know within the function. The local variables do not exist outside this function. One important
part of the function body is the return statement. Typically, you will want to assign the function
to a variable. Sometimes functions will also produce output to the console. This print behavior is
typically called a side effect of the function. Whatever we want to do via a function can be done in
two ways: either print the result inside the function or return the values using the return statement
which will be stored in a variable where the function was called. If you return the values to the
calling code then that code has access to these values. If you only print the values then the calling
code does not have access to the data object.



Chapter 2 32

1 > getStats<- function(data){

2 + meanData<-mean(data)

3 + stdDev<-sd(data)

4 + medianData<-median(data)

5 +

6 + print(c(meanData,stdDev,medianData))

7 + }

8 >

9 > data<-c(12,34,54,65,25,75,90,23,12,45,65,76)

10 > getStats(data)

11 [1] 48.00000 26.70036 49.50000

NOTE - In the example above, there is no return line in this version of the getStats
function, so we did not store the return value of getStats in a variable.

A function call is an instantiation of the function. This means the function call is run at the line
where the function call is made. Function parameters allow you to pass data to the function. When
calling a function, you specify a value for each argument as specified in the function’s declaration.
The arguments passed to a function can be of any datatype, however the code body will only work
with the specific datatype. It is good practice to list the data types for the arguments within the
comments.

1 > helloMessage<- function(name){ #this function takes name as argument.

2 + if(is.character(name)==TRUE){

3 + print(paste("Hello",name))

4 + }

5 + else{

6 + print("Error")

7 + }

8 + }

9

10 > helloMessage("Michelle")

11 [1] "Hello Michelle"

12 > helloMessage(123)

13 [1] "Error"

Global vs local variables in functions

Global variables are those variables which have global scope in a program. A global scope means
the variable is known throughout the complete program and can be used anywhere in the program.
A variable with a local scope, is restricted to the function or block of code where it is defined.
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1 > count=0 #global scope

2 > increasingCountBy5 <- function(ctr){ #function definition

3 + ctr=ctr+5 #local scope limited to this function

4 + counter=count # bad practice using a global variable inside function

5 + counter=counter+1 #local scope limited to this function

6 + return(paste("Counter =",counter,"ctr =",ctr,"count =",count))

7 + }

8

9 > increasingCountBy5(count) #function call statement

10 [1] "Counter = 1 ctr = 5 count = 0"

11

12 > print(counter)

13 Error in print(counter) : object 'counter' not found

14 > print(ctr)

15 Error in print(ctr) : object 'ctr' not found

In the above code, count is the only global variable. ctr is the variable passed as an argument to the
function and counter is a local variable defined inside the function. We can pass the global variable
count to the function increasingCountBy5; when the function call statement is executed the passed
variable’s value is passed to the function as the variable ctr. The changes made to the argument will
not be reflected in the global variable count, in other words changes made to the argument will not
be reflected outside of the function.

NOTE - Make a strict habit of not using a global variable inside the function directly!
It is a poor programming practice. If you want your function to access some variable
then you should always pass that variable as an argument to that function.

In the above code you can also notice that variable ctr and counter are not present outside the
function, i.e. their scope is limited to that function where they are defined.

Why use functions

• Code Organization - Writing short functions to perform specific, well-defined tasks helps
structure the code of a program.

• Testing and debugging - If you make functions, then it is easier to pinpoint problems within
the code. Testing individual functions is easier, when you pass an argument that you know
the expected result.

• Removing redundancy - Functions help in removing code redundancy. If you are writing the
same block of code twice in any program, then that block of code should be a function.

• Faster development time - By organizing the code in functions, development time is
shortened since there is less code to write. Functions make the code easier to understand
and improves the organization of the program.
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• Easier maintenance - If you revisit your code after a period of time and you organized your
code using functions, the modularity of the functions makes it easier to understand and edit
the code.



Chapter 3
More R Programming

Data Frames

Data frames are the most common type of compound data structures used in R in addition to scalar
values (vectors) and collections of values (array sequences). They are similar to C++ and Java objects
or C’s arrays of data structures. A data frame is composed of multiple values each of which is
commonly a sequence.

A data frame is often created by loading data from an external file or created internally. Data frames
are essentially spreadsheets of columns and rows.

1 > seq1<-1:10

2 > seq2<-seq(from=100,to=300,by=5)

3

4 # create a new data frame 'df'

5 > df<-data.frame(seq1,seq2)

6 Error in data.frame(x, y) :

7 arguments imply differing number of rows: 10, 41

8 > seq2<-seq(from=100,to=300,length=10)

9 > df<-data.frame(seq1,seq2)

Note: To combine two vectors into a data frame they have to be of the same length

Individual elements of a data frame can be accessed the same way individual elements of an array,
by using [] subscript operator.

1 > df

2 x y

3 1 1 100.0000

4 2 2 122.2222

5 3 3 144.4444

6 4 4 166.6667

7 5 5 188.8889

8 6 6 211.1111

9 7 7 233.3333
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10 8 8 255.5556

11 9 9 277.7778

12 10 10 300.0000

13

14 > df[6,2]

15 [1] 211.1111

16

17 # Accessing entire column

18 > df[,2]

19 [1] 100.0000 122.2222 144.4444 166.6667 188.8889 211.1111 233.3333 255.5556 277\

20 .7778 300.0000

21

22 # Accessing entire row

23 > df[1,]

24 x y

25 1 1 100

Details about what any variable is storing can be determined using the structure function str(). Other
functions used with a data frame are; dim() to determine the dimensions of any variable, length()
to determine the length of the data frame, ncol() to determine the number of columns in the data
frame and nrow to determine the number of rows in the data frame.

1 > str(df)

2 'data.frame': 10 obs. of 2 variables:

3 $ x: int 1 2 3 4 5 6 7 8 9 10

4 $ y: num 100 122 144 167 189 ...

5

6 > ncol(df)

7 [1] 2

8 > nrow(df)

9 [1] 10

10

11 > length(df)

12 [1] 2

13 > dim(df)

14 [1] 10 2

15

16 > length(df$x)

17 [1] 10

18 > dim(df)[1]

19 [1] 10

20
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21 #referencing the last element

22 > x

23 [1] 1 2 3 4 5 6 7 8 9 10

24 > x[length(x)]

25 [1] 10

R comes with many built-in datasets which can be used for practice purpose. A complete list of
built-in datasets can be accessed using the homepage of package datasets. Datasets Package⁷

The “discoveries” dataset contains the numbers of “great” inventions and scientific discoveries in
each year from 1860 to 1959.

1 > discoveries

2 Time Series:

3 Start = 1860

4 End = 1959

5 Frequency = 1

6 [1] 5 3 0 2 0 3 2 3 6 1 2 1 2 1 3 3 3 5 2 4 4 0 2 3 7\

7 12 3 10 9 2 3 7

8 [33] 7 2 3 3 6 2 4 3 5 2 2 4 0 4 2 5 2 3 3 6 5 8 3 6 6\

9 0 5 2 2 2 6 3

10 [65] 4 4 2 2 4 7 5 3 3 0 2 2 2 1 3 4 2 2 1 1 1 2 1 4 4\

11 3 2 1 4 1 1 1

12 [97] 0 0 2 0

13

14 #converting in built data into a dataframe

15 > Discoveries<- data.frame(year=1860:1959,count=discoveries)

16 > head(Discoveries)

17 year count

18 1 1860 5

19 2 1861 3

20 3 1862 0

21 4 1863 2

22 5 1864 0

23 6 1865 3

The head() and tail() functions list the first and last six rows of a data frame respectively. These
functions come in handy when dealing with larger datasets.

Given a logical statement, any() tests if at least one value in the set meets a criterion. This is a useful
function for querying values stored in a data structure.

⁷https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/00Index.html

https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/00Index.html
https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/00Index.html
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1 > any(Discoveries[,2]<0)

2 [1] FALSE

3

4 > any(Discoveries[,1] < 1860 | Discoveries[,1] > 1959)

5 [1] FALSE

6 # A logical statement can consist of more than 1 clause.

7 # The '|' represents the OR of the 2 conditionals '&' is the and

8 # of the two conditionals. In this example, we are testing to see

9 # if there are any years that are less than 1860 or greater than 1959.

Descriptive statistics

Within this book, we will be mainly dealing with big data through R. In order to get a sense of your
data, statistical functions such as mean(), max(), which(),are helpful in navigating a huge dataset
quickly and accurately.

1 > mean(Discoveries[,2])

2 [1] 3.1

3

4 > round(mean(Discoveries[,2]))

5 [1] 3

6

7 > max(Discoveries[,2])

8 [1] 12

9

10 #which function helps you get the index of matching condition

11 > which(Discoveries[,2]==12)

12 [1] 26

13

14 > Discoveries[26,]

15 year count

16 26 1885 12

To obtain quick summary statistics on a data object, use the summary() function.
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1 > summary(Discoveries)

2 year count

3 Min. :1860 Min. : 0.0

4 1st Qu.:1885 1st Qu.: 2.0

5 Median :1910 Median : 3.0

6 Mean :1910 Mean : 3.1

7 3rd Qu.:1934 3rd Qu.: 4.0

8 Max. :1959 Max. :12.0

To sum a column in a data frame, use the colSums() function.

1 > colSums(Discoveries[2])

2 count

3 310

Note 1: Note that the colSums() function requires a vector reference rather than a data
frame, therefore, no comma.

Note 2: Note the camel casing in the function name. camelCase is the practice of writing
compound words or phrases such that each word or abbreviation begins with a capital
letter. Remember R is case-sensitive.

Running queries on data frames

The which() function allows you to specify a query over a data set. Queries are an important tool
for data analysis. Queries allow you to identify or locate a particular data record or record set.

1 # how many years were fewer than 5 discoveries observed?

2 > length(which(Discoveries[,2] < 5))

3 [1] 79

4

5 # In which years were fewer than 5 discoveries observed?

6 > Discoveries[(which(Discoveries[,2] < 5)),]

7 year count

8 2 1861 3

9 3 1862 0

10 4 1863 2

11 5 1864 0

12

13 # List of years with 0 discoveries

14 > Discoveries[(which(Discoveries[,2] == 0)),1]

15 [1] 1862 1864 1881 1904 1917 1933 1956 1957 1959
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Dealing with missing data

Missing data values in a data frame are encoded as NA. In R, a missing value restricts any calculation
of summary statistics or numeric expressions on the data. In R, in order to perform statistical
operations on a numeric vector, the missing values need to be removed. Missing values can be
removed using the built-in R function na.omit. Some functions accept an argument that allows the
caller of the function to specify that the NA values should be removed, the argument is called na.rm.
To determine if a dataset has missing values, use the function any() or is.na().

The following code, uses these functions while examining the built in dataset “airquality”; “airqual-
ity” contains measurements of daily air quality in New York City from May through September
1973.

1 > head(airquality)

2 Ozone Solar.RWind Temp Month Day

3 1 41 190 7.4 67 5 1

4 2 36 118 8.0 72 5 2

5 3 12 149 12.6 74 5 3

6 4 18 313 11.5 62 5 4

7 5 NANA14.3 56 5 5

8 6 28 NA14.9 66 5 6

9

10 > mean(airquality$Solar.R)

11 [1] NA

12 Warning message:

13 In mean.default(airquality) :

14 argument is not numeric or logical: returning NA

15

16 > any(is.na(airquality))

17 [1] TRUE

18

19 > mean(airquality$Solar.R,na.rm=TRUE)

20 [1] 185.9315

21

22 > which(is.na(airquality$Solar.R))

23 [1] 5 6 11 27 96 97 98

24

25 > air_complete<-na.omit(airquality)

26 > head(air_complete)

27 Ozone Solar.RWind Temp Month Day

28 1 41 190 7.4 67 5 1

29 2 36 118 8.0 72 5 2

30 3 12 149 12.6 74 5 3
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31 4 18 313 11.5 62 5 4

32 7 23 299 8.6 65 5 7

33 8 19 99 13.8 59 5 8

Saving R scripts

We recommend using RStudio to create your R scripts. However, R commands can be written in
a text file and loaded on demand. Create a text file in a text editor and save the file with the .R
extension. Use the source() function to load and execute the script.

1 # Simple R script: created.R

2 seq1<-1:10

3 seq2<-seq(from=100,to=300,length=10)

4 df<-data.frame(seq1,seq2)

5

6 > source("created.R")

7 > df

8 x y

9 1 1 100.0000

10 2 2 122.2222

11 3 3 144.4444

12 4 4 166.6667

13 5 5 188.8889

14 6 6 211.1111

15 7 7 233.3333

16 8 8 255.5556

17 9 9 277.7778

18 10 10 300.0000

The source function is useful when you are dealing with a large dataset and loading the data set
takes time.

Saving .Rdata file

Rstudio allows you to save the current workspace as a .Rdata file. When starting Rstudio after a
system shutdown you can load the .Rdata workspace; this will cause all the objects loaded previously
to be restored. Basically this functionality comes in handy when we are dealing with big data and
loading of files in R takes a lot of time. In these scenarios, it is quicker to save the workspace so that
you do not have to load the data files again.
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Conditional Statements

The if() statement is used to construct conditional execution paths. In conditional execution, code
statements are only executed if certain conditions are TRUE. The conditional code statements are
enclosed in curly braces { and }.

1 > num1<-10

2 > num2<-5

3 > if(num1 > num2) {

4 + print("a is less than b")

5 + }

6

7 [1] "a is less than b"

Logical operators

Operators Semantics

== Equality
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to

Binary Operators

Operators Semantics

&& AND (both statements are true)
|| OR ( Atleast one statement is true
! NOT (Statement is false)

Nested IF statements

1 > if (sum(1:10) >= sqrt(75)) {

2 + print("true")

3 + } else {

4 + print("false")

5 + }

6 [1] "true"

The ifelse() function provides a more compact syntax for if-else constructs.
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1 > ifelse(sum(1:5) >= 10, "it's greater", "it's smaller")

2 [1] "it's greater"

Switch statements

Switch statements are used when a particular variable can have multiple cases and and different
execution code is associated with the different values.

1 #readline function can be used to get a user input

2 > name <- readline(prompt="Enter a name: ")

3 Enter a name: Michelle

4

5 > switch(name,

6 + Michelle={

7 + print("Hi Michelle! How are you?") # any logical statement for Michelle

8 + },

9 + John={

10 + print("Hi John! How are you?") # any logical statement for John

11 + },

12 + {

13 + Print("default") #default logic

14 + }

15 + )

16

17 [1] "Hi Michelle! How are you?"

Control structures

R supports two common forms of iteration (looping):

• restricted iteration which executes commands a fixed number of times: for loop
• unrestricted iteration in which the loop runs until some condition is no longer true: while loop

The for loop runs a fixed number of times based on the values assigned to an index or looping
variable.
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1 > for (i in 1:3) {

2 + print(paste("i =",i))

3 + }

4

5 [1] "i = 1"

6 [1] "i = 2"

7 [1] "i = 3"

8

9 > i

10 [1] 3

Instead of looping a fixed number of times, a for loop can also iterate over a set. The loop variable
takes on each value in the set one at a time.

1 > cities <-c("Boston","NewYork","SanFrancisco")

2 > for (city in cities) {

3 + print(city)

4 + }

5

6 [1] "Boston"

7 [1] "New York"

8 [1] "San Francisco"

For loops can be nested to run through each row and column of a matrix.

1 > mat<- matrix(nrow=4, ncol=5, sample(0:1))

2 > mat

3 [,1] [,2] [,3] [,4] [,5]

4 [1,] 0 0 0 0 0

5 [2,] 1 1 1 1 1

6 [3,] 0 0 0 0 0

7 [4,] 1 1 1 1 1

8

9 > for (i in 1:nrow(mat) ) {

10 + for (j in 1:ncol(mat)){

11 + if(mat[i,j] == 1){

12 + mat[i,j]<- "Michelle"

13 + }

14 + else{

15 + mat[i,j]<- "John"

16 + }

17 + }
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18 + }

19

20 > mat

21 [,1] [,2] [,3] [,4] [,5]

22 [1,] "John" "John" "John" "John" "John"

23 [2,] "Michelle" "Michelle" "Michelle" "Michelle" "Michelle"

24 [3,] "John" "John" "John" "John" "John"

25 [4,] "Michelle" "Michelle" "Michelle" "Michelle" "Michelle"

In an unrestricted iteration, the loop executes the loop statements until a condition is no longer true.

1 > x <-0

2 > while (x < 10) {

3 + print (x)

4 + x <-x + 1

5 + }

6

7 [1] 0

8 [1] 1

9 [1] 2

10 [1] 3

11 [1] 4

12 [1] 5

13 [1] 6

14 [1] 7

15 [1] 8

16 [1] 9

Apply function

The apply function allows you to apply a function to a list of values. It is a form of functional
programming. Think of it as an alternative method of looping thriough the values of a list and
applying the same code to each value in the list.

apply(): Applies a function to components of a list or other object, and then returns the
results as a list, a vector, or a matrix.
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1 > x <- matrix(c(1:10), ncol=5, byrow=TRUE)

2 > x

3 [,1] [,2] [,3] [,4] [,5]

4 [1,] 1 2 3 4 5

5 [2,] 6 7 8 9 10

6 > apply(x, 1, mean)

7 [1] 3 8

8

9 > apply(x, 2, mean)

10 [1] 3.5 4.5 5.5 6.5 7.5

Note: apply(x, 1, mean) calculates the mean of two rows in x, and apply(x, 2, mean)
calculates the mean of five columns in x.

In the above example, apply extracts each column/row as a vector, one at a time and passes the
vector to the mean function. It substitutes the use of loop. An alternative solution to the above code
can be written as:

1 > avgs<-numeric(5)

2 > for(i in 1:5){

3 + avgs[i]<-mean(x[,i])

4 + }

5

6 > avgs

7 [1] 3.5 4.5 5.5 6.5 7.5

8

9 #OR

10 > apply(x, 2, mean)

11 [1] 3.5 4.5 5.5 6.5 7.5

The looping mechanism in R, is relatively slow when compared to apply, this is especially true
for large datasets. The apply function reduces the processing time considerably, since the looping
mechanism in the apply function is done in compiled code, like c or Fortran, not in R’s own
interpreted code.

Types of apply

• lapply - L in lapply stands for list. So lapply(x) returns a list of the same length of x
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1 > x<- list(a<-c(1:20),b<-c(10:20),c<-c(20:30))

2 > x

3 [[1]]

4 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

5

6 [[2]]

7 [1] 10 11 12 13 14 15 16 17 18 19 20

8

9 [[3]]

10 [1] 20 21 22 23 24 25 26 27 28 29 30

11

12 > results<-lapply(x,mean)

13 > results

14 [[1]]

15 [1] 10.5

16

17 [[2]]

18 [1] 15

19

20 [[3]]

21 [1] 25

22

23 > class(results)

24 [1] "list"

• sapply - S stands for simplifying. Sapply works like lapply but instead of returning a list it
returns a simple vector. It accepts an argument simplify. If simplify=TRUE, then it returns
a simple vector. If simplify=FALSE, it behaves like lappy. The defaulT value for simplify is
TRUE.

1 > results<-sapply(x,mean)

2 > results

3 [1] 10.5 15.0 25.0

4

5 > class(results)

6 [1] "numeric"

• tapply - It is used to apply a function to subsets of a vector and the subsets are defined by some
other vector, usually a factor. It is typically a categorical variable that is used to group the
value of the vector into bins. The function is applied to each group defined by the categorical
variable.
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1 > x <- 1:20

2 > x

3 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

4

5 > y <- factor(rep(letters[1:5], each = 4))

6 > y

7 [1] a a a a b b b b c c c c d d d d e e e e

8 Levels: a b c d e

9

10 > tapply(x, y, mean)

11 a b c d e

12 2.5 6.5 10.5 14.5 18.5

• mapply - mapply is used when you want to apply a function to the 1st element of each and
then the 2nd elements of each etc. In line 1 below, we apply sum to 3 rows that consist of 5
columns who values are all 1’s in the first column to all 5’s in the last column. We have 5
values in the result vector since we are summing the values for each column.

1 > mapply(sum, 1:5, 1:5, 1:5)

2 [1] 3 6 9 12 15

3

4 > mapply(rep, 1:4, 4:1)

5 [[1]]

6 [1] 1 1 1 1

7 [[2]]

8 [1] 2 2 2

9 [[3]]

10 [1] 3 3

11 [[4]]

12 [1] 4

Split-Apply-Combine strategy

The methodology for functional programming involves:

• Breaking big problems into small, manageable chunks of code
• Performing operations on each chunk of code separately.
• Combining the output of each piece into a single output.

The “Plyr” package provides intuitive functions for split-apply-combine strategy
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Fig. 3a - plyr package

Example:

1. Split the iris dataset into three parts.
2. Remove the species name variable from the data.
3. Calculate the mean of each variable for the three different parts separately.
4. Combine the output into a single data frame.

1 > library (plyr)

2 # Here tilde operator is taking each species value at every iteration.

3

4 > ddply(iris,~Species,function(x) colMeans(x[,-which(colnames(x)=="Species")]))

5 Species Sepal.Length Sepal.Width Petal.Length Petal.Width

6

7 1 setosa 5.006 3.428 1.462 0.246

8 2 versicolor 5.936 2.770 4.260 1.326

9 3 virginica 6.588 2.974 5.552 2.026

10

11 #OR

12

13 > iris_mean <- adply(iris3,3,colMeans)

14 > iris_mean

15 X1 Sepal L. Sepal W. Petal L. Petal W.

16 1 Setosa 5.006 3.428 1.462 0.246

17 2 Versicolor 5.936 2.770 4.260 1.326

18 3 Virginica 6.588 2.974 5.552 2.026

19

20 > class(iris_mean)

21 [1] "data.frame"

Note: You need to install the plyr package to run this code.
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Reading and writing data

The ability to read and write external text files is an essential part of data processing. Many data sets
are stored in simple text files. Excel and other programs can export and import text files in certain
formats.

Lets load the built-in data set AirPassengers containing monthly international airline passenger data
between 1949 and 1960. After displaying the data set, copy the data into a simple text file.

1 > AirPassengers

2 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

3 1949 112 118 132 129 121 135 148 148 136 119 104 118

4 1950 115 126 141 135 125 149 170 170 158 133 114 140

5 1951 145 150 178 163 172 178 199 199 184 162 146 166

6 1952 171 180 193 181 183 218 230 242 209 191 172 194

7 1953 196 196 236 235 229 243 264 272 237 211 180 201

8 1954 204 188 235 227 234 264 302 293 259 229 203 229

9 1955 242 233 267 269 270 315 364 347 312 274 237 278

10 1956 284 277 317 313 318 374 413 405 355 306 271 306

11 1957 315 301 356 348 355 422 465 467 404 347 305 336

12 1958 340 318 362 348 363 435 491 505 404 359 310 337

13 1959 360 342 406 396 420 472 548 559 463 407 362 405

14 1960 417 391 419 461 472 535 622 606 508 461 390 432

While R has several functions for reading files, the most commonly used function for reading
text files is read.table(). When calling read.table, the first argument contains the name of the file
you wish to open. You can also specify the header argument and the separator argument. The
header argument specifies if the data has a row with variable names. The separator character isthe
delimiting character, or the delimiter, that separate the data values from each other. In the example
below a space separates the data values from each other.

1 > ap<-read.table("airPassengers.txt",header=TRUE,sep="")

2 > ap

3 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

4 1949 112 118 132 129 121 135 148 148 136 119 104 118

5 1950 115 126 141 135 125 149 170 170 158 133 114 140

6 1951 145 150 178 163 172 178 199 199 184 162 146 166

7 1952 171 180 193 181 183 218 230 242 209 191 172 194

8 1953 196 196 236 235 229 243 264 272 237 211 180 201

9 1954 204 188 235 227 234 264 302 293 259 229 203 229

10 1955 242 233 267 269 270 315 364 347 312 274 237 278

11 1956 284 277 317 313 318 374 413 405 355 306 271 306

12 1957 315 301 356 348 355 422 465 467 404 347 305 336
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13 1958 340 318 362 348 363 435 491 505 404 359 310 337

14 1959 360 342 406 396 420 472 548 559 463 407 362 405

15 1960 417 391 419 461 472 535 622 606 508 461 390 432

The read.table() function has a skip=x parameter which allows you to skip some number of lines.

1 > ap<-read.table("airPassengers.txt",skip=4,header=TRUE,sep="")

2 > ap

3 X1952 X171 X180 X193 X181 X183 X218 X230 X242 X209 X191 X172 X194

4 1 1953 196 196 236 235 229 243 264 272 237 211 180 201

5 2 1954 204 188 235 227 234 264 302 293 259 229 203 229

6 3 1955 242 233 267 269 270 315 364 347 312 274 237 278

7 4 1956 284 277 317 313 318 374 413 405 355 306 271 306

8 5 1957 315 301 356 348 355 422 465 467 404 347 305 336

9 6 1958 340 318 362 348 363 435 491 505 404 359 310 337

10 7 1959 360 342 406 396 420 472 548 559 463 407 362 405

11 8 1960 417 391 419 461 472 535 622 606 508 461 390 432

NOTE - read.table function converts the data into factors. when you do not desire this
conversion, use stringsAsFactors=FALSE as an argument.

New columns can be added to a data set using the cbind() function.

1 > ap$Total<-cbind(rowSums(ap))

2 > ap

3 X1952 X171 X180 X193 X181 X183 X218 X230 X242 X209 X191 X172 X194 Total

4 1 1953 196 196 236 235 229 243 264 272 237 211 180 201 4653

5 2 1954 204 188 235 227 234 264 302 293 259 229 203 229 4821

6 3 1955 242 233 267 269 270 315 364 347 312 274 237 278 5363

7 4 1956 284 277 317 313 318 374 413 405 355 306 271 306 5895

8 5 1957 315 301 356 348 355 422 465 467 404 347 305 336 6378

9 6 1958 340 318 362 348 363 435 491 505 404 359 310 337 6530

10 7 1959 360 342 406 396 420 472 548 559 463 407 362 405 7099

11 8 1960 417 391 419 461 472 535 622 606 508 461 390 432 7674

A data object can be exported to a file using the write.table() function.
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1 > getwd()

2 [1] "C:/Users/Martin/Downloads"

3

4 > write.table(ap,"AirPassNG.txt",col.names=NA,

5 row.names=TRUE,quote=FALSE,sep=",")

Note: R requires the use of a forward slash (‘/’) to separate directories (folders) not the
backslash (‘\’) used by Windows.
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Date processing

Dates are an important data format and require special processing. R has built-in functions to deal
with date values encoded in different formats. The built-in as.date() function can only handle dates
but not time values. Better support for date processing is provided by the lubridate package.

The base object date stores date internally as a number of days elapsed since January 1, 1970.

1 > as.Date("1970-01-01")

2 [1] "1970-01-01"

3 > as.numeric(as.Date("1970-01-02"))

4 [1] 1

5 > as.numeric(as.Date("1970-01-01"))

6 [1] 0

By default, the date object requires a string is the format “YYYY-MM-DD”, but other format
specification are possible:

Fig. 4a - Date Formats

Use ?strptime to get a full description of date formatting strings.
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1 > d<-as.Date("Dec-27-2014",format="%b-%d-%Y")

2 > as.numeric(d)

3 [1] 16431

4 > dt1 <-as.Date("12/29/2014", format="%m/%d/%Y")

5 > dt1

6 [1] "2014-12-29"

7 > dt2 <-as.Date("Oct-11-14", format="%b-%d-%y")

8 > dt2

9 [1] "2014-10-11"

10 > dt3 <-as.Date("17.12.14", format="%d.%m.%y")

11 > dt3

12 [1] "2014-12-17"

13 > dt4 <-as.Date("December17, 2014", format="%B %d, %Y")

14 > dt4

15 [1] "2014-12-17"

Note - The format argument above is not the format of your output, it is the format of
your input date which helps the as.date function to understand any kind of input date
given the format argument.

R supports calculations on dates, including differences between dates, adding and subtracting days
and dates. Remember to convert strings to dates using the as.Date function. In the example below
the dates array in line 1 contains character strings NOT dates. Line 4 generates an error since you
are performing the subtraction operation on strings nor dates.

1 > dates<- c("12/29/2014","Oct-11-14", "December17, 2014")

2 > is.character(dates)

3 [1] TRUE

4 > dates[1] - dates[2]

5 Error in dates[1] - dates[2] : non-numeric argument to binary operator

6 > date1<- as.Date(dates[1], format="%m/%d/%Y")

7 > date2<- as.Date(dates[2], format="%b-%d-%y")

8 > date1-date2

9 Time difference of 79 days

R supports vectors (collections) of dates and can calculate the interval between them. Again,
functions that perform date data calculations require that the dates have the same format, dates
with the different format will return NA.
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1 > dts<-as.Date(c("2014-06-01","2014-07-08","2014-10-14","Oct-11-14"))

2 > diff(dts)

3 Time differences in days

4 [1] 37 98 NA

Time processing

In addition to dates, time variables are also an important data value in data science. Time values
are intrinsically processed using the POSIXctclass. The POSIXctclass represents combined date and
time value.

1 > tm1 <-as.POSIXct("2014-12-28 09:59:43")

2 > tm1

3 [1] "2014-12-28 09:59:43 EST"

4 > class(tm1)

5 [1] "POSIXct" "POSIXt"

Fig. 4b - Different formats for date and time

1 > tm2 <-as.POSIXct("2014-12-19 11:38:42", tz="GMT")

2 > tm2

3 [1] "2014-12-19 11:38:42 GMT"

4 > tm3 <-as.POSIXct("25072013 08:32:07", format = "%d%m%Y %H:%M:%S")

5 > tm3

6 [1] "2013-07-25 08:32:07 EDT"

Like date calculations, in order to perform time operations on two different time variables, the format
should be same.
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1 > tm1 <-as.POSIXct("2013-07-24 23:55:26")

2 > tm1

3 [1] "2013-07-24 23:55:26 EDT"

4 > tm2 <-as.POSIXct("25072013 08:32:07", format = "%d%m%Y%H:%M:%S")

5 > tm2

6 [1] "2013-07-25 08:32:07 EDT"

7 > tm2 -tm1

8 Time difference of 8.611389 hours

9 > tm1 + 25

10 [1] "2013-07-24 23:55:51 EDT"

To get the current time and date as a POSIXct object, use the Sys.time()functions.

1 > Sys.time()

2 [1] "2015-07-08 17:46:33 EDT"

The lubridate package offers the same functionality as the function now(). Lubricate also provides
the today() function; it returns the current date.

1 > library("lubridate")

2 > now()

3 [1] "2015-07-08 18:02:29 EDT"

4

5 > today()

6 [1] "2015-07-08"

7

8 > class(today())

9 [1] "Date"

The POSIXltclass enables easy extraction of specific components of a time variable and makes the
calculation of specific components easier.

1 > tm3 <-as.POSIXlt("2015-03-03 05:35:10")

2 > tm3$hour

3 [1] 5

4 > tm3$min

5 [1] 35

6 > tm3$hour<- tm3$hour+2

7 > tm3

8 [1] "2015-03-03 07:35:10 EST"

While the built-in time and date processing of R is often sufficient, there are several packages that
simplify certain date and time processing tasks. The most popular package for date processing is
lubridate. Other packages like chron, timewarp, date are also available for date processing and
manipulation, each offering some advantage over the other.
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Packages

Packages are collections of R functions, data, and compiled code in a well-defined format. The
directory where packages are stored is called the library. R comes with a standard set of packages,
but others are available for download. Once installed, they have to be loaded into the session before
they can be used.

Important functions used with packages:

• .libPaths() - to get library location
• library() - to list all installed packages
• search() - to list currently loaded packages
• require() - to load a package for use

Installing a package in R

Steps to install a package in R:

1.Select Packages/Install package(s)…

2.Select the closest download site

3.Choose the package let’s say ‘lubridate’ from the list

4.Select Packages/Install package(s) from local zip files…

5.Select the directory into which the package was downloaded

6.Select the package zip file

The package is now installed and needs to be loaded using the library(lubridate)function

The same process can be done in one step in R studio by running the following command.

1 install.packages("lubridate")

Lubridate package

The lubridate package is one of several date processing add-on packages available for R. It provides
more intuitive handling of date and time values. The library is a wrapper around the POSIXctclass
with more intuitive syntax. Using lubridate requires installation of the package first.

The lubridate package has numerous functions for creating date and time objects that do not require
a parse format string.
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Fig. 4c - lubridate functions

1 > tm1.lub <-ymd_hms("2014-12-28 10:26:23")

2 > tm1.lub

3 [1] "2014-12-28 10:26:23 UTC"

4 >

5 > tm2.lub <-mdy_hm("12/28/14 11:44")

6 > tm2.lub

7 [1] "2014-12-28 11:44:00 UTC"

8 > tm3.lub <-dmy_hm("28.12.14 9:30AM")

9 > tm3.lub

10 [1] "2014-12-28 09:30:00 UTC"

The lubridate package simplifies the extraction of date and time components.

Fig. 4d - Accessor functions of lubridate
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1 > year(tm3.lub)

2 [1] 2014

3

4 > wday(tm3.lub, label=TRUE)

5 [1] Sun

6 Levels: Sun < Mon < Tues < Wed < Thurs < Fri < Sat

7

8 > hour(tm3.lub)

9 [1] 9

10 > tz(tm3.lub)

11 [1] "UTC"

The lubridate package also simplifies updating date and time components of a POSIXctobject.
The update() function allows the parts of a date (such as day, month, year) to be updated in a
POSIXctobject.

1 > tm3.lub <-dmy_hm("28.12.14 9:30AM")

2 > tm3.lub

3 [1] "2014-12-28 09:30:00 UTC"

4

5 > year(tm3.lub) <-2013

6 > tm3.lub

7 [1] "2013-12-28 09:30:00 UTC"

8

9 > update(tm3.lub, year = 2010, month = 1, day = 1)

10 [1] "2010-01-01 09:30:00 UTC"

To facilitate time calculations, convert a time to a decimal value.

1 > tm3.lub

2 [1] "2013-12-28 09:30:00 UTC"

3

4 > tm3.dechr <-hour(tm3.lub) + minute(tm3.lub)/60 + second(tm3.lub)/3600

5 > tm3.dechr

6 [1] 9.5

Suppose that within a dataset, instead of a reference to a full date, only the month of the date
is available. To address this, we need to add a dummy month and year to convert this string to a
proper date format. Once the format is in a date format, we can easily convert the string to a numeric
month or vice versa.
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1 > mon<-"Sep"

2 > date<-"2015-Sep-01"

3 > mydate<- as.Date(date,format="%Y-%b-%d")

4 > mydate

5 [1] "2015-09-01"

6

7 > format(mydate,"%d")

8 [1] "01"

9 > format(mydate,"%m")

10 [1] "09"

Text Processing

R has many built-in functions to process text. Some common text functions are: paste(), nchar(),
substr() etc.

1 > pdf<- "stringr.pdf"

2 #paste command with separator argument set to no space

3 > paste("http://cran.r-project.org/web/packages/stringr/",pdf,sep="")

4 [1] "http://cran.r-project.org/web/packages/stringr/stringr.pdf"

5

6 # no sep argument and thus there is a space

7 > paste("http://cran.r-project.org/web/packages/stringr/",pdf)

8 [1] "http://cran.r-project.org/web/packages/stringr/ stringr.pdf"

9

10 > nchar(pdf)

11 [1] 11

12

13 > substr(pdf,3,6)

14 [1] "ring"

stringr package

The stringr package has many functions that simplify text manipulation.
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Fig. 4e - Text processing functions

1 library("stringr")

2 > str_c("http://cran.r-project.org/web/packages/stringr/",pdf)

3

4 [1] "http://cran.r-project.org/web/packages/stringr/stringr.pdf"

5

6 > fac<-factor(c(0,1,1,0,1,0,0,1), labels=c("False","True"))

7 > fac

8 [1] False True True False True False False True

9 Levels: False True

10

11 #str_length can handle factors whereas nchar cannot

12 > str_length(fac)

13 [1] 5 4 4 5 4 5 5 4

14 > nchar(fac)

15 Error in nchar(fac) : 'nchar()' requires a character vector

16

17 #str_sub can handle factors whereas substr cannot

18 > str_sub(fac,1,3) #arguments vector, Start, End

19 [1] "Fal" "Tru" "Tru" "Fal" "Tru" "Fal" "Fal" "Tru"

20

21 > substr(fac,-4,-2)
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22 [1] "" "" "" "" "" "" "" ""

The str_split function helps split the string into two strings just like a subset.

1 > library(stringr)

2 > str<-"01-04-2013T12:32:43"

3

4 > split<-str_split(str,"T")

5 > split

6 [[1]]

7 [1] "01-04-2013" "12:32:43"

The str_trim function removes leading and trailing spaces from a text string. We would suggest to
always use this function when dealing with text.

1 > str<-" Leading spaces and trailing spaces "

2 > str_trim(str)

3 [1] "Leading spaces and trailing spaces"

All the other stringr package functions are very similar to some other built-in functions of R, for
example, str_detect and str_extract are very similar to the grep function.

Regular Expression

A regular expression (regex) is a special text string that specifies a search pattern. Similar to wild
cards, Searching all files in the directory: .txt, Regular expression: “.txt$”. Also known as Reg Exp or
regex.

Regex in R can be somewhat different from regex in any other languages, but the essential basics
remain the same, for example metacharacters used in R are the same as regex other languages.

Metacharacters

Metacharacters are special characters which have specific meaning of their own. Most characters,
including letters and digits, when used in a regex will match themselves, but metacharacters are
different, for example the Pattern ‘Plus+’ will not match the pattern ‘Plus+’.

• ’.’ Normally matches any one character except a newline. Within square brackets, the dot is
literal.

• ’[]’ Groups a series of pattern elements to a single element.
• ’+’ Matches preceding operator one or more times.
• ’?’ Matches preceding operator zero or one time
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Examples:

• [hc]at: matches “hat” or “cat”
• .at: matches any 3 characters ending with “at”

1 #str_replace is another stringr function which takes three

2 # argument string, match and replacement

3 > text<- c("bat","hat","match","mismatch")

4 > str_replace(text, ".at","*123*")

5 [1] "*123*" "*123*" "*123*ch" "mis*123*ch"

6

7 #replacing at or a i.e. replacing if t is there (1) or if t is not there (0)

8 > text<- c("bat","hat","match","mismatch","man")

9 > str_replace(text, "at?","*123*")

10 [1] "b*123*" "h*123*" "m*123*ch" "mism*123*ch" "m*123*n"

11

12 > text<- c("bat","hat","match","mismatch")

13 > str_replace(text, "a+","*123*")

14 [1] "b*123*t" "h*123*t" "m*123*tch" "mism*123*tch"

Escaping metacharacters

Metacharacters are a very powerful tool to implement regex successfully, but the problem arises
when we want to match a metacharacter as a character. What if there is a need to search ‘Plus+’
literally? Escaping metacharacters is a mechanism to use when you want to match a literal
metacharacter expression as oppose to interpret a metacharacter expression.

Fig. 4f - Escaping metacharacters
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1 > per<- "plus+"

2 > str_replace(per, "plus+", "replaced")

3 [1] "replaced+"

4 > str_replace(per, "plus\\+", "replaced")

5 [1] "replaced"

R supports two different forms of regular expressions.

• Extended regular expression: They use an implementation of the POSIX 1003.2 standard: that
allows some scope for interpretation and the interpretations here are those currently used by
R.

Fig. 4g - Extended regex

• Perl-like regular expression: pattern matching using the same syntax and semantics as Perl
5.10
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Fig. 4h - Perl like regex

Example:

1 > library(stringr)

2 > email<-"yatish.jain@gmail.com"

3

4 > str_match(email,"\\@\\w+\\.") #getting both @ and .

5

6 [,1]

7 [1,] "@gmail."

8

9 > str_match(email,"\\@(\\w+)\\.") #adding parenthesis to desired text

10

11 [,1] [,2]

12 [1,] "@gmail." "gmail"

13

14 > str_match(email,"\\@(\\w+)\\.")[[2]]

15

16 [1] "gmail"

Grep function

The grep function is a very powerful and very important function for text processing. It searches
for matches to an argument pattern within each element of a character vector. Grep takes two value
arguments:

• If you pass value=FALSE, returns a new vector with the indexes of the elements in the input
vector that could be matched by the regular expression.

• If you pass value=TRUE, returns a vector with copies of the actual elements in the input vector
that could be matched.
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1 > text<- c("bat","hat","match","mismatch")

2 > grep("ma?",text, value=T)

3 [1] "match" "mismatch"

4

5 > grep("ma?",text, value=F)

6 [1] 3 4

Grep function can be used to test the regex on a small subset of data before implementing the regex
on big data for cleaning or extracting data, this way you can check the result of your regex quickly.

1 > text<- c("bat","hat","//match?","?mismatch")

2 > grep("\\//",text, value=F)

3 [1] 3

4

5 > text1<-str_replace(text,"\\//", "")

6 > str_replace(text1,"\\?", "")

7 [1] "bat" "hat" "match" "mismatch"
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Algorithmic Complexity

Complexity is a way to approximate the time and space required for an algorithm or program to
execute. Algorithmic complexity quantifies how fast or slow an algorithm is. Complexities are used
to compare algorithms on a conceptual level, i.e., ignoring low-level details.

Algorithmic complexity can be defined as the time taken by any algorithm without depending on
its implementation details, but if you think about it, a given algorithm will take different amounts
of time on the same input depending on factors such as: computer load, compiler used, processor
speed, disk speed, instruction set etc. The only way around this problem is to consider the efficiency
of each algorithm asymptotically i.e., the value it will eventually reach. Thus, we measure time T(n)
as the number of steps, given that each step takes constant time.

Let’s consider an example. Consider adding two binary integers digit by digit (or bit by bit). Adding
a single bit is a “step” in the computation, adding two n-bit integers takes n steps. Consequently, the
total computational time is T(n) = c * n, where c is time taken by the addition of two bits and n is
the number of times we need to add two bits. Repeating the same process will take different times
on two different machines but time T(n) grows linearly as input size increases.

In the above example, the actual execution time is difficult to estimate as it depends on a multitude
of factors:

• Type of CPU
• Operating system
• Programming language
• Other processes running concurrently
• Data structures and data representation

Hence instead of worrying about the actual execution time, programmers compare and classify
algorithms through their asymptotic growth as a function of the size of the input.

There is often a significant difference between the best, worst, and average runtime of a program.
Average class behavior is considered as an acceptable algorithm.

Example: Suppose you need to search a column in a data frame or a vector for a specific element, e.g.,
find the data for flight “JB721-010214”. How many string comparisons would you need to perform
if there were n elements?

• On average: n/2
• Worst case: n
• Best case: 1
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Asymptotic growth function

In the previous example, the average and the worst case runtime would both double if the input size
were doubled. The actual runtime would need to be measured on a specific platform, but we can
characterize the runtime behavior to increase linearly with the input size.

The aim of Algorithmic complexity is to classify algorithms according to their performance.
Computer Scientists use the big-O notation to capture the essence of the worst case behavior
of an algorithm or program. It is a function that describes the growth behavior of runtime or
memory/storage requirements for a program. For the previous example, the program would have a
time complexity of O(n).

Common complexities

Fig. 5a - Complexities

• Constant - O(1)
• Linear - O(n)
• Quadratic - O(n² )
• Cubic - O(n³ )
• Exponential - O(2ⁿ)
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• Logarithmic - O(log n)
• Log-linear - O(n log n)

Constant

An algorithm is said to be constant time complexity when it requires the same amount of time
regardless of input size.

Example - Accessing array element

Linear

An Algorithm runs in linear time when execution time is directly proportional to the input size.
Example - Linear array search

Fig. 5b - Linear Complexity
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Quadratic

An Algorithm runs in a quadratic time when execution time is directly proportional to the square
of input size. Example - Bubble sort, selection sort

Fig. 5c - Quadratic Complexity

Cubic

An Algorithm runs in a cubic time when execution time is directly proportional to the cube of input
size.
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Fig. 5d - Cubic Complexity

Exponential

An algorithm runs in exponential time, when the execution time increases exponentially with the
increase in the input size.

Example - Wheat and chessboard problem

Logarithmic

An algorithm runs in logarithmic time, when the execution time is proportional to the logarithm of
the input size.

Example - Binary search

Log - Linear

An algorithm runs in log linear time, when the execution time is proportional to n times the
logarithm of the input size.
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Calculating Complexities

Aside from estimating runtime and space complexity of a program through an analysis of its
algorithms, you can understand a program’s requirements through experiments. For example. You
can measure how long the program takes to run as you increase the size of inputs, data objects, or
data files. Use the system.time() function to time calls to functions. Once timing measurements are
obtained, time can be plotted against input size and a regression curve can be fitted against the data.

Consider this simple function that sums a list of numeric objects:

1 # add the numbers in the vector

2 addNums<-function (v) {

3 l <-length(v)

4 s <-0

5 for (i in 1:l) {

6 s <-s + v[i]

7 }

8 return (s)

9 }

10 s <-addNums(c(3,5,7,1,8,2,3))

11 s

To evaluate the running time of an algorithm, we will simply ask how many “steps” it takes. In this
case, we can count the number of times it performs the addition. For a vector with n elements, it
takes n steps, therefore this function has a time complexity of O(n).

An actual measurement of the time in milliseconds can be calculated using system.time().

1 > system.time(s <-addNums(seq(from=1,to=1000000)))

2

3 user system elapsed

4

5 0.64 0.00 0.64

6

7 > system.time(s <-addNums(seq(from=1,to=2000000)))

8

9 user system elapsed

10

11 1.23 0.00 1.23

Notice how a vector of twice the size takes about twice as long to be summed.

The code below is written in markdown language. To run this code, open a new R markdown file in
Rstudio and copy this code and then paste it in the buffer. Make changes to the code as instructed
in the comments, in order to run and check the complexity of your own function.
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Note - To run the code below you need to remove one backtick whenever it is mentioned
in the comments.

1 ---

2 title: "Report"

3 author: "Martin Schedlbauer & Yatish Jain"

4 date: "June 10, 2015"

5 output: html_document

6

7 ---

8

9 ````{r} #Remove one backtick to run the program.

10 #DATA INTAKE PART#

11 ##############################################################################

12 ### In this part of the code replace the functions ###########################

13 ### for which you want to measure complexity. ################################

14 ##############################################################################

15 ### Comment any print line from the function #################################

16 ### to avoid unnecesary data in report ######################################

17 ##############################################################################

18 ### Try to keep the variable to read the file as dataFrame itself. ###########

19 ### Just replace the functions in this file with your functions to ###########

20 ### make this code run. ######################################################

21 ##############################################################################

22

23 addNums<-function (v) {

24 l <-length(v)

25 s <-0

26 for (i in 1:l) {

27 s <-s + v[i]

28 }

29 return (s)

30 }

31

32 ```` #Remove one backtick to run the program

33

34

35 ````{r} #Remove one backtick to run the program

36 #this part of code makes the model graphs

37 n<-c(1:30)

38 t<-100*n

39 t1<-2^n
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40 t2<- ((1/2)*(n^3))

41 t3<-5*(n^2)

42 t4<- 400*sqrt(n)

43 t5<- 400*log(n)

44

45 plot(n,t,type="l")

46

47 text(28,2900,"100n Linear")

48 points(t1,col="blue",type="l")

49 text(10,2980,"2^n Exponential",col="blue")

50 points(t2,col="red",type="l")

51 text(15,2750,"1/3(n^3) Cubic",col="red")

52 points(t3,col="green",type="l")

53 text(23,2600,"5(n^2) Quadratic",col="Dark green")

54 points(t4,col="grey",type="l")

55 text(28,2300,"400sqrt(n) Square root",col="Dark grey")

56 points(t5,col="brown",type="l")

57 text(25,1500,"400log(n) Logarithmic",col="brown")

58

59

60 ```` #Remove one backtick to run the program

61

62 Model complexity Graph which can be used to depict the complexity

63 of your function

64

65

66 ````{r, echo=FALSE} #Remove one backtick to run the program

67

68 ##REPORT GENERATION##

69

70 # Here read the datafile to pass to the function above.

71 data<- seq(from=1,to=1000000)

72

73 double<-rbind(data,data)

74 quad<-rbind(double,double)

75 eight<-rbind(quad,quad)

76 sixteen<-rbind(eight,eight)

77 datafile<-list(data,double,quad,eight,sixteen)

78

79 # change nrow value based on the number of functions you are testing.

80 time<-matrix(nrow=1,ncol=length(datafile))

81
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82 #uncomment the time rows based on the number of functions testing.

83 for(i in 1:length(datafile)){

84 time[1,i]<-system.time(addNums(datafile[[i]]))[3]

85 #time[2,i]<-round(system.time(exampleFunction(data[[i]]))[3],digit=2)

86 #Add as many functions as you want

87 #time[3,i]<-round(system.time(dummyFunction(data[[i]]))[3],digit=2)

88 #time[4,i]<-round(system.time(anything(data[[i]]))[3],digit=2)

89

90 }

91

92 size<-c(1,nrow(double),nrow(quad),nrow(eight),nrow(sixteen))

93 # Instead of 1 use nrow(data) when you are using

94 #an input file with many rows.

95 #Here data is small so I am using 1(hardcoded)

96

97 correlation<-rep(NA,5)

98 #for(i in 1:4) { Run this loop for the number of

99 #functions you are checking,

100 #example if you are checking 4 functions then run this loop 4 times

101 plot(time[1,]~size, xlab="Data size", ylab="Time (mm)")

102 correlation[1]<-cor(time[1,],size)

103 fit<-lm(time[1,]~size)

104 abline(fit)

105 #}

106

107

108 ```` #Remove one backtick to run the program

109

110 #Graphs of input size vs time for all the different functions used.

111 #Compare the graphs with the model graph to depict the complexity of your functi\

112 on.

Explanation

To make the above code work, you must pass the same data values as arguments to all the functions,
which you are doubling or quadrupling in the report generation part of the code.

A simple method for doubling or quadrupling the data is to do rbind on data. Another way to do
the same thing is by using a loop to send the same data to the function twice or four times. Once we
increase the size, we want to make a matrix to store the system time value. For each function, we
test as rows and for each complexity we test as columns. For example if you are testing the system
time of 4 functions by single data, double data and quadruple data, then you will have to make a
matrix of 4 by 3 (4 functions and 3 data sizes).
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In the first for loop, we are storing the values of each function to the same row, by keeping the row
number the same and increasing the column number by a loop counter. So at the end of this for loop,
we have a matrix with each row representing one function and the corresponding column values
will have the system time for the respective data sizes. With this matrix, we can plot the graphs for
each function using the row of that function in the for loop and fit the regression line over the same.

After editing the above code with your own function, just click on knit HTML to get a report like
this.

Report

Martin Schedlbauer & Yatish Jain

June 10, 2015

1 #DATA INTAKE PART#

2 ################################################################################\

3 ################

4 ### In this part of the code replace the functions for which you want to measure\

5 complexity.####

6 ################################################################################\

7 ################

8 ### Comment any print line from the function to avoid unnecesary data in report#\

9 ####

10 ################################################################################\

11 ################

12 ### Try to keep the variable to read the file as dataFrame itself. Just replace \

13 the functions in this file with your functions to make this code run###

14 ################################################################################\

15 ################

16 addNums<-function (v) {

17 l <-length(v)

18 s <-0

19 for (i in 1:l) {

20 s <-s + v[i]

21 }

22 return (s)

23 }



Chapter 5 77

1 n<-c(1:30)

2 t<-100*n

3 t1<-2^n

4 t2<- ((1/2)*(n^3))

5 t3<-5*(n^2)

6 t4<- 400*sqrt(n)

7 t5<- 400*log(n)

8

9 plot(n,t,type="l")

10 text(28,2900,"100n Linear")

11 points(t1,col="blue",type="l")

12 text(10,2980,"2^n Exponential",col="blue")

13 points(t2,col="red",type="l")

14 text(15,2750,"1/3(n^3) Cubic",col="red")

15 points(t3,col="green",type="l")

16 text(23,2600,"5(n^2) Quadratic",col="Dark green")

17 points(t4,col="grey",type="l")

18 text(28,2300,"400sqrt(n) Square root",col="Dark grey")

19 points(t5,col="brown",type="l")

20 text(25,1500,"400log(n) Logarithmic",col="brown")
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Model complexity Graph which can be used to depict the complexity of your function
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Graphs of input size vs time for all the different functions used. Compare the graphs with the model
graph to depict the complexity of your function.
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Importing data in R

R has a very wide variety of packages available that allows import of almost any format. The most
common formats are:

Fig. 6a - Different Formats

Other than text and R binary files, R can also import data from other statistical packages using the
“foreign” library. Among many others, the “foreign” library supports importing from:

• Stata - read.dta() function to read and write.dta() function to write.
• SPSS - read.spss() function to read and write.foreign() function to write
• SAS - read.xport() function to read and write.foreign() function to write

The first step to import data is to set the working directory to the folder where your file is located. To
know the current working directory getwd() function is used and to change the working directory
setwd() function is used.
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1 > ## absolute path to a folder

2 > setwd("C:/Users/Martin/Downloads")

3 > ## relative path to a folder

4 > setwd("../")

The setwd() function follows basic Linux commands of taking both absolute and relative paths as
arguments. In a relative path few basic symbols are:

1. ∼ Home directory
2. . current working directory
3. .. one directory up from current directory

R for Windows understands the forward slash but not a single backslash, i.e., this specification will
not work:

1 > ## will not work

2 > setwd("C:\Users\Martin\Downloads")

But this will work:

1 > ## will work

2 > setwd("C:\\Users\\Martin\\Downloads")

Defensive programming

Its always a good habit to incorporate defensive programming techniques when programming.
When importing a file , it is good practice to check whether the file exists in the current working
directory or not. The file.exists() function checks if the file or directory exists and returns TRUE if
it does, FALSE otherwise.

Another similar function is the exists() function, it check if the object exists in the current
environment. Usage of the exists() function is very common, expecially when importing big data,
since you do not want to import data that already exists. When a file is loaded, its contents are stored
in the computer’s RAM (main memory) which is often limited. The 64-bit version of R can hold more
data than the 32-bit version of R. Aside from in-memory storage, files can also take significant time
to load.

The dir.create() function: creates the provided passed directory, if it does not already exist.
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1 > ## create a new directory (folder) if it

2 > ## does not exist

3 > if (!file.exists("data")) {

4 + dir.create("data")

5 + }

6

7 > if(!exists("dataset")){

8 + dataset<- read.table(bigDataFile, header=TRUE, sep=" ")

9 + }

The above code becomes very important when dealing with big data as we don’t want to load the
dataset everytime we run our code as that will cost us both time and memory. We should always
follow this practice of defensive programming when working with big data.

File Import

Fixed width files

Fixed width text files are a special class of text files where the format is specified with columnwidth,
alignments and padded characters. Data is arranged in rows and columns with one entry per row.
Column width is constant throughout the file and is defined by character, which in turn determines
the amount of data it can contain.

Below is an example of a file with a fixed width. The complete file can be accessed using this link
Weekly SST data⁸

1 Weekly SST data starts week centered on 3Jan1990

2

3 Nino1+2 Nino3 Nino34 Nino4

4 Week SST SSTA SST SSTA SST SSTA SST SSTA

5 03JAN1990 23.4-0.4 25.1-0.3 26.6 0.0 28.6 0.3

6 10JAN1990 23.4-0.8 25.2-0.3 26.6 0.1 28.6 0.3

7 17JAN1990 24.2-0.3 25.3-0.3 26.5-0.1 28.6 0.3

8 24JAN1990 24.4-0.5 25.5-0.4 26.5-0.1 28.4 0.2

Fixed width files can be read using read.fwf() function. This function reads the files directly into a
data frame.

⁸http://www.cpc.ncep.noaa.gov/data/indices/wksst8110.for

http://www.cpc.ncep.noaa.gov/data/indices/wksst8110.for
http://www.cpc.ncep.noaa.gov/data/indices/wksst8110.for
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1 > x <- read.fwf(file=url("http://www.cpc.ncep.noaa.gov/data/indices/wksst8110.fo\

2 r"),skip=4,widths=c(12, 7,4, 9,4, 9,4, 9,4))

3 > head(x)

4 V1 V2 V3 V4 V5 V6 V7 V8 V9

5 1 03JAN1990 23.4 -0.4 25.1 -0.3 26.6 0.0 28.6 0.3

6 2 10JAN1990 23.4 -0.8 25.2 -0.3 26.6 0.1 28.6 0.3

7 3 17JAN1990 24.2 -0.3 25.3 -0.3 26.5 -0.1 28.6 0.3

8 4 24JAN1990 24.4 -0.5 25.5 -0.4 26.5 -0.1 28.4 0.2

9 5 31JAN1990 25.1 -0.2 25.8 -0.2 26.7 0.1 28.4 0.2

10 6 07FEB1990 25.8 0.2 26.1 -0.1 26.8 0.1 28.4 0.3

11

12 > str(x)

13 'data.frame': 1332 obs. of 9 variables:

14 $ V1: Factor w/ 1332 levels " 01APR1992 ",..: 102 409 715 1021 1314 275 582 88\

15 8 1194 290 ...

16 $ V2: num 23.4 23.4 24.2 24.4 25.1 25.8 25.9 26.1 26.1 26.7 ...

17 $ V3: num -0.4 -0.8 -0.3 -0.5 -0.2 0.2 -0.1 -0.1 -0.2 0.3 ...

18 $ V4: num 25.1 25.2 25.3 25.5 25.8 26.1 26.4 26.7 26.7 26.7 ...

19 $ V5: num -0.3 -0.3 -0.3 -0.4 -0.2 -0.1 0 0.2 -0.1 -0.2 ...

20 $ V6: num 26.6 26.6 26.5 26.5 26.7 26.8 26.9 27.1 27.2 27.3 ...

21 $ V7: num 0 0.1 -0.1 -0.1 0.1 0.1 0.2 0.3 0.3 0.2 ...

22 $ V8: num 28.6 28.6 28.6 28.4 28.4 28.4 28.5 28.9 29 28.9 ...

23 $ V9: num 0.3 0.3 0.3 0.2 0.2 0.3 0.4 0.8 0.8 0.7 ...

Writing a fixedwidth file can be done bywrite.fwf() functionwhich is provided in the gdata package.

1 >install.packages("gdata")

2 >library("gdata")

3 > num<-round(rnorm(10),2)

4

5 > testData <- data.frame(num1=c(1:10, NA),

6 + num2=c(NA, seq(from=1, to=5.5, by=0.5)),

7 + num3=c(NA, num),

8 + int1=c(as.integer(1:4), NA, as.integer(4:9)),

9 + fac1=factor(c(NA, letters[1:9], "hjh")),

10 + fac2=factor(c(letters[6:15], NA)),

11 + cha1=c(letters[17:26], NA),

12 + cha2=c(NA, "longer", letters[25:17]),

13 + stringsAsFactors=FALSE)

14

15 > write.fwf(testData, na="NA" )

16
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17 num1 num2 num3 int1 fac1 fac2 cha1 cha2

18 1 NA NA 1 NA f q NA

19 2 1.0 -1.75 2 a g r longer

20 3 1.5 -1.41 3 b h s y

21 4 2.0 2.12 4 c i t x

22 5 2.5 0.79 NA d j u w

23 6 3.0 0.33 4 e k v v

24 7 3.5 -0.72 5 f l w u

25 8 4.0 0.49 6 g m x t

26 9 4.5 0.30 7 h n y s

27 10 5.0 0.12 8 i o z r

28 NA 5.5 -1.12 9 hjh NA NA q

Unstructured text files

Many times, a data analyst is given a file that does not follow a predefined format. To deal with this
type of file, you have to read it in such a way that becomes conducive to analysis. Functions like
scan() and readLines() can scan/ read your data word by word. The readLines() function provides
the encoding argument; the encoding argument specifies the encoding of the file.

1 data<- readLines("myFile.txt", encoding="UTF-8")

2

3 scan("myFile.txt", character(0)) # separate each word

4 scan("myFile.txt", character(0), sep = "\n") # separate each line

CSV

CSV(Comma separated values) files contain data records organized in rows with an optional header
row containing the column labels. There is no standard CSV file format, although RFC 4180 is an
attempt to standardize some aspects of a .csv file format. One optional aspect of a .csv file, is that
data values can be optionally double quoted. This allows the comma character to be present in a
data value. Data values can also be missing.

1 #Example CSV file

2

3 "first_name","last_name","company_name","address","city","county","state","zip",\

4 "phone1","phone2","email","web"

5

6 "James","Butt","Benton, John B Jr","6649 N Blue Gum St","NewOrleans","Orleans","\

7 LA",70116,"504-621-8927","504-845-1427","jbutt@gmail.com","http://www.bentonjohn\

8 bjr.com"

9



Chapter 6 85

10 "Josephine","Darakjy","Chanay, Jeffrey A Esq","4 B Blue Ridge Blvd","Brighton","\

11 Livingston","MI",48116,"810-292-9388","810-374-9840","josephine_darakjy@darakjy.\

12 org","http://www.chanayjeffreyaesq.com"

CSV files can be loaded in R using the read.csv() function. The function takes many arguments, the
list below provides a description for the more popular arguments :

• Header - If the file contains a header row with column labels, specify header = TRUE else
FALSE.

• Skip - If the data of interest starts anywhere but the first row, specify skip=x, where x is
number of lines to be skipped.

• Sep - While CSV files are expected to use comma (,) as a separator, some might not. The
sep=”x” allows you to specify any character as the field separator.

• quote - In both CSV and tab delimited flat files, it is not uncommon that data values are placed
inside quotes: “ or ‘. Specifying quote=”” causes the quotes to not be read. If data values are
placedwithin non-standard quotes, then the data valuesmust be processed as character strings
and the quotes must be removed through programming.

• stringsAsFactors - Strings are often converted to factors which may not be the desired result.
Specify stringsAsFactors=FALSE to avoid having R automatically convert string values to a
factor.

1 > data<- c("Name",1,2,3,"text")

2 > data1<-c("John",34,12,65,"Hello world")

3 > data2<- c("Michelle",21,87,98,"Good day")

4

5 > df<-data.frame(data,data1,data2)

6

7 > write.csv(df, file="myData.csv")

8 > import<-read.csv("myData.csv",header=T, sep=",",stringsAsFactors=F)

9 > import

10 X data data1 data2

11 1 1 Name John Michelle

12 2 2 1 34 21

13 3 3 2 12 87

14 4 4 3 65 98

15 5 5 text Hello world Good day

A tab delimited file

A tab delimited file is the same as a CSV file except that the separator is a tab (the \t character in R).
Reading a tab-delimited file can be done with:
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• read.csv() using sep=”\t”
• read.table()

1 > people <-read.table("us-500.txt",header=TRUE)

2 > str(people)

Excel

This file format is the native format for Excel. Excel also exports data as CSV, but sometimes data is
only available in the native file format. Excel files have a .xls and .xlsx extension. Importing such a
file requires the xlsx library.

Excel files can contain one or more worksheets, so you must specify which sheet is to be loaded
using sheetIndex=x where x is the number of the worksheet.

1 > library(xlsx)

2 > people <-read.xlsx("us-500.xlsx",sheetIndex=1)

3 > str(people)

Note - This may require the use of the 32-bit version of R.

Data can be written to an Excel file using the function write.xlsx(). However, for compatibility, store
data in CSV or tab-delimited text files rather than in Excel format.

1 > library(xlsx)

2 > data<- c("Name",1,2,3,"text")

3 > data1<-c("John",34,12,65,"Hello world")

4 > data2<- c("Michelle",21,87,98,"Good day")

5 > df<-data.frame(data,data1,data2)

6

7 > write.xlsx(df, file="myData.xlsx")

8 > import<-read.xlsx("myData.xlsx",sheetIndex=1)

9 > import

10 NA. data data1 data2

11 1 1 Name John Michelle

12 2 2 1 34 21

13 3 3 2 12 87

14 4 4 3 65 98

15 5 5 text Hello world Good day

The xlsx package is slow and time consuming. When dealing with a large file, alternative packages
like openxlsx and XLConnect are fast and offer many alternative functions for writing data.
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1 > library("XLConnect")

2 > wb = loadWorkbook("xlconnect1.xlsx",create=T) # create if doesn't exist

3

4 > createSheet(wb,"cars stats")

5 > writeWorksheet(wb,cars,"cars stats")

6

7 > saveWorkbook(wb)

8

9 > data<- readWorksheet(wb,"cars stats",header=T)

10 > str(data)

11 'data.frame': 50 obs. of 2 variables:

12 $ speed: num 4 4 7 7 8 9 10 10 10 11 ...

13 $ dist : num 2 10 4 22 16 10 18 26 34 17 ...

14

15

16 library(openxlsx) #load package

17 #read file into data frame accounting for 3rd row as starting row, essentially o\

18 mmiting unnecessary huge title and description

19 data<-read.xlsx("DATA.xlsx", sheet=1, startRow=3)

Binary R data

Saving R objects in .RDatafiles is fast and convenient but not compatible with programs other than
R. Use the load() function to load previously save objects. To determine which objects were loaded,
use the objects() or ls() commands.

1 > ls()

2 [1] "addNums" "char.vec" "correlation" "data"

3 [5] "data2" "datafile" "date" "date1"

4 [9] "df" "double" "dt1" "dt2"

5 [13] "fac" "fit" "i" "import"

6 [17] "n" "num" "num.vec" "pdf"

7 [21] "s" "sixteen" "size" "t"

8 [25] "t3" "t4" "t5" "text"

9 [29] "tm1" "tm1.lub" "tm2" "tm2.lub"

10 [33] "x" "xit"

11

12 > save.image('Data.RData')

13 > rm(list=ls())

14 > ls()

15

16 character(0)

17
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18 > load('Data.RData')

19 > ls()

20

21 [1] "addNums" "char.vec" "correlation" "data"

22 [5] "data2" "datafile" "date" "date1"

23 [9] "df" "double" "dt1" "dt2"

24 [13] "fac" "fit" "i" "import"

25 [17] "n" "num" "num.vec" "pdf"

26 [21] "s" "sixteen" "size" "t"

27 [25] "t3" "t4" "t5" "text"

28 [29] "tm1" "tm1.lub" "tm2" "tm2.lub"

29 [33] "x" "xit"

Rdata files are of most importance when you are dealing with big data since loading of big data is
time consuming. To load multiple large files, sometimes there is a need to clear the cache variables
as the content is stored in RAM. In such cases, it is good practice to save the loaded data first to an
Rdata image. The advantage of using an Rdata object is that objects in that session can be restored
without actually loading the data again thus saving a lot of time.

XML

XML stands for Extensible Markup Language. It was designed to describe data in a human readable
format that is simple to parse. The purpose of XML is to provide a software and hardware
independent encoding format for carrying information. The data is described within XML in the
form of a tree.

An XML document consists of matching nested tags describing data. The tags are free-form and
require the sender and receiver of the document to agree upon their meaning and representation.
There are numerous industry-standard XML schemas.

1 # Example XML code

2 <?xml version="1.0" encoding="UTF-8"?>

3 <Student>

4 <FName>John</FName>

5 <LName>Doe</LName>

6 <Mark>60.0</Mark>

7 <Grade>A </Grade>

8 </Student>

XML documents must begin with a declaration that specifies information needed by the parser. The
general declaration looks like this:
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1 <?xmlversion="1.0" encoding="UTF-8"?>

The tag is a markup construct that begins with < and ends with >. Tags come in three flavors:

• start tag: <Student>
• end tag: </Student>
• empty-element tag: <isActive/>

Every start tagmust have amatching end tag or the document will not parse. The characters between
the start and end tags, if any, are the element’s content.

Tags nested within other tags are referred to as child elements.

1 <!--

2 attributes can be expressed in any object's start tag and follow the format

3 attributename=attrbutevalue

4 -->

5 <course crn="3387">

6 <title>Programming in R</title>

7 <program>Data Science</program>

8 <instructor>

9 <name>Martin Schedlbauer, Ph.D.</name>

10 <email>m.schedlbauer@neu.edu</email>

11 </instructor>

12 </course>

In the above example, the title, program and instructor tags are children elements of the parent tag
course. Similarly, Instructor is a parent tag with two child elements name and email.

XML Package

The “XML” package contains the necessary functions to read and parse XML. The XML package
provides the functions necessary to load an XML file and parse its document tree:

• xmlParse()
• xmlToDataFrame()

xmlParse()

The xmlParse() function is used to parse the XML data and creates a document object of class
XMLInternalDocument.
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1 xmlobj<-xmlParse("pubmed_sample.xml")

Once the files have been successfully parsed, R stores the XML document in the internal object
xmlobj.

xmlToDataFrame()

The xmlToDataFrame() function is used to parse the XML data directly into a dataframe.

XML can be parsed in R in two ways:

• Parsing via HTTP
• Parsing into a tree

Parsing via HTTP

An XML document can also be loaded via HTTP through its URL using either xmlParse() or
xmlToDataFrame().

1 > url<-"http://www.statistics.life.ku.dk/primer/mydata.xml"

2 > data <-xmlToDataFrame(url)

3

4 > head(data)

5 Girth Height Volume

6 1 8.3 70 10.3

7 2 8.6 65 10.3

8 3 8.8 63 10.2

9 4 10.5 72 16.4

10 5 10.7 81 18.8

11 6 10.8 83 19.7

Parsing into a tree

To navigate the document object, R requires parsing with xmlTreeParse() followed by retrieving the
root node object using xmlRoot().

1 > xmlobj<-xmlTreeParse("pubmed_sample.xml")

2 > r <-xmlRoot(xmlobj)

r is of class XMLNode.

Note - pubmed_sample.xml file can be downloaded from this link. pubmed_sample.xml⁹

Once the data is parsed into a tree, different functions are used to access the data from the tree:

• xmlName() - get the name of the root element.

⁹https://drive.google.com/file/d/0B9uiGI8JEJw5Xzg3dmk5Tnc5WVk/view

https://drive.google.com/file/d/0B9uiGI8JEJw5Xzg3dmk5Tnc5WVk/view
https://drive.google.com/file/d/0B9uiGI8JEJw5Xzg3dmk5Tnc5WVk/view
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1 > xmlName(r)

2 [1] "PubmedArticleSet"

• xmlSize() - returns the number of subelements (children) for the passed XMLnode

1 > xmlSize(r)

2 [1] 19

Accessing a child node

Each child node is accessible through subscripting through its parent node.

1 > r[[1]]

2 <PubmedArticle>

3 <MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE">

4 <PMID Version="1">23874253</PMID>

5 <DateCreated>

6 ...

7 > xmlName(r[[1]])

8 [1] "PubmedArticle"

Navigating the tree

Repeated subscripting is used to navigate the tree.

1 > r[[1]][[2]][[1]][[1]]

2 <PubMedPubDatePubStatus="received">

3 <Year>2012</Year>

4 <Month>1</Month>

5 <Day>15</Day>

6 </PubMedPubDate>

So in the above example: The root of the tree is <PubmedArticleSet>, therefore:

• r[[n]]is the nʰ child of <PubmedArticleSet>
• r[[n]][[k]]is the kʰ child of the nʰ node under <PubmedArticleSet>
• and so on…

Node Attributes

Attributes are name/value pairs attached to a start tag. Retrieve the attributes as a vector using
xmlAttrs(), then access individual attributes using subscripting.
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1 > r[[1]][[2]][[1]][[1]]

2 <PubMedPubDatePubStatus="received">

3 <Year>2012</Year>

4 <Month>1</Month>

5 <Day>15</Day>

6 </PubMedPubDate>

7

8 > attrs<-xmlAttrs(r[[1]][[2]][[1]][[1]])

9 > attrs

10 PubStatus

11 "received"

Values

Once we have discovered the correct node, then the xmlValue() function is used to read the value
between the tags.

1 > r[[1]][[1]][[2]]

2 <DateCreated>

3 <Year>2013</Year>

4 <Month>07</Month>

5 <Day>22</Day>

6 </DateCreated>

7

8 > r[[1]][[1]][[2]][[1]]

9 <Year>2013</Year>

10

11 > xmlValue(r[[1]][[1]][[2]][[1]])

12 [1] "2013"

To get all of the children nodes as a list, use subsetting.

1 > r[[1]][[1]][[2]][1:3]

2 $Year

3 <Year>2013</Year>

4 $Month

5 <Month>07</Month>

6 $Day

7 <Day>22</Day>

8 attr(,"class")

9 [1] "XMLNodeList"

10
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11 > r[[1]][[1]][[2]][1:3]$Year

12 <Year>2013</Year>

The xmlSApply() function applies a function over a list or vector. It essentially implements the Visitor
pattern (apply a function to each node visited). This example applies the xmlName() function to each
child node.

1 > xmlSApply(r[[1]], xmlName)

2 MedlineCitation PubmedData

3 "MedlineCitation" "PubmedData"



Chapter 7
Web Scraping

As the Internet continues to grow, the amount of data available has increased substantially. However,
availability of data does not translate to accessibility. Web scraping(or web harvesting or web data
extraction) extracts data from websites when the data is not available in text file format, such as
CSV.

Example: YellowPages does not make its data available as a file or a Web API, so extracting or
“scraping” the data from their websites is required. To extract a list of the restaurants use a GET
request to specify the search and then “parse” or “scrape” the HTML page that is returned. This
would be done programmatically.

Fig. 7a - Yellow pages example

Although data can be manually copied from websites, it will be too tedious and time consuming for
anything but very small amounts of data. “Web Scraping” automates this process, so that instead of
manually copying the data from websites, a program does the copying.
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Web Scraping essentially transforms the raw unstructured data in HTML into structured data that
can be cleaned, stored, shaped, and used in analysis. Once the data is in structured format, it can be
easily manipulated for any analysis depending upon the requirement.

Advantages of web scraping services:

• Automation of data
• Data collected is accurate and reliable
• Data can be collected from both static and dynamic pages
• End result of the scraping gives the data in a format conducive for further analysis.

Major challenges of web scraping services:

• Source complexity: Depending upon the complexity of information need to be extracted
scraping can be parallelized.

• High volume of scraping can cause regulatory damage to pages.
• Scale of measure: scaling can become an issue depending upon the measure of the source data
to be scraped.

• Legal Issues

Legal issues:

Some websites do not allow web scraping as part of their terms of use. Additionally, the scraped data
may be private or copyrighted and may be prohibited from being copied or used for commercial
purposes.

Legal theories related to automated online data collection:

1. Copyright Infringement
2. Breach of contract

A. Enforceability of website terms of use.
B. Terms of use that may prohibit automated data collection

3. Computer fraud and abuse act
4. Hot news misappropriation

Current web scraping approaches range from ad-hoc, manual scraping, to fully automated parsing.

• Manual Copy-and-Paste
• Regular Expression Matching
• HTTP Retrieval with HTML Parsing
• DOM Parsing
• Web Scraping Toolkits
• Vertical Integration Platforms
• Metadata & Semantic Markup Recognition
• Machine Learning Based Visual Scanning
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Web scraping toolkits

There are several web scraping toolkits available:

• Google chrome scraper
• Kimono lab
• Import io
• Simple PHP scraper
• Outwit hub
• ScraperWiki
• Fminer.com

All the scraping toolkits essentially works on the same principle with some advantages or disadvan-
tage over one another.

Google chrome scraper

To install Google chrome scraper, go to chrome web store and search for a scraper, Add the first
extension to your Google chrome.

Actual scraping is very easy with this extension, Just select the data on any web page, right click on
the selected data and click scrape similar.

Let’s see an actual working example for scraping all the links on www.boattrader.com

Fig. 7b - Scraping boats link
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Fig. 7c - Scraped data

As shown in the image above, Google chrome web scraper is a simple tool to use. It makes copying
data to a clipboard or to a Google document fairly easy. Any element not accessible easily can be
scraped by editing the XPath reference. XPath is a query language for HTML and XML.

Let’s see a complex scraping with the use of XPath reference.

We will scrape the data of all the movies of Actor Will Ferrell from IMDB. Will Ferrell¹⁰

Following the same steps as above:

• Select one of the movies and click scrape similar.

¹⁰http://www.imdb.com/name/nm0002071/

http://www.imdb.com/name/nm0002071/
http://www.imdb.com/name/nm0002071/
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Fig. 7d - Movies of Will Ferrell

• But the data scraped this time is not proper because the list is not structured properly and the
scraper cannot distinguish the difference between movie title and year.

Fig. 7e - Scraped data

• The current XPath reference //div[3]/div[3]/div[3]/div[2]/div, contains the HTML data for
this data. RIght click on movie name and click inspect element.
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• Look closely for the tags around movie name, here movie name is enclosed within <b> tag.

Fig. 7f - Movie name HTML

• Let’s add a b element in the XPath reference and see the result.

Fig. 7g - Adding b tag to XPath

Fig. 7h - Movies scraped
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• Further we can scrape year in a separate column. If we look at the HTML in the above image,
the year is enclosed within span tag, so we can add span tag to XPath just like b tag to scrape
year separately.

Fig. 7i - Adding span tag to XPath in second column

Fig. 7j - Final scraping result

Other tools like Kimono labs and import.io are also very easy to use and can be used for reliable
web extraction.
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HTTP Retrieval with HTML Parsing

Most of the timeweb scraping toolkits do not produce desirable results.Most data scientist needmore
flexibility from a web scraper than what is typically provided in a web scraping toolkit. Because of
this, data scientists prefer to create their own scraper.

Scrapers usually have three steps:

• Manipulating URLs
• Scraping using XPath
• Looping

Before diving into URLmanipulation and XPath, it’s essential that HTML fundamentals are covered.

HTML

HTML Hyper Text Markup Language is the standard markup language used to create web pages.
The basic syntax for writing HTML is to write HTML elements consisting of tags enclosed in angle
brackets. Each HTML tag has it own definition. A limited number of HTML tags and their definitions
are listed in the image below.



Chapter 8 102

Fig. 8a - HTML Tags

It is important to know the definition of HTML tags as the information on any web page is wrapped
around different HTML tags. To scrape any piece of information from a web page, there is a need
to know the unique set of HTML tags governing that information.

To scrape data successfully from any web page, one doesn’t have to be an HTML expert, one needs
only to know the HTML structure and HTML tags.

Manipulating URLs

GET,PUT and POST response

A GET request requests data from a specified source whereas POST request submits data to be
processed to a specified resource. A GET request sends the query string (name/value pair) in the
URL. For example, in the following www.foo.com/blah.do?stuff=other, the string after the question
mark ‘?’ contains the request parameter for the name/value where the name is stuff and the value
is other. The following

The following is a put request on the Google resource.

https://www.google.com/webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-8#q=put%20request

Changing the URL q=get change the google search from a put request to a get request.
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https://www.google.com/webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-8#q=get%20request

A POST request sends the query string (name/value pair) in the message body.

Fig. 8b - GET vs POST

A good scraper should have a parameterized GET URL such that any user can change the URL
to scrape similar pages. For example in the R code below we want to scrape the 2014-2015 season
statistics for Boston Bruins entire team.

1 > var<-8470627

2 > print(paste("http://bruins.nhl.com/club/player.htm?id=",var))

3 [1] "http://bruins.nhl.com/club/player.htm?id= 8470627"

4 #note the space in between URL

The paste() function can be used to manipulate the URL but by default the separator is assumed by
the paste function to be a single space; however spaces are not allowed in the name of a URL. To
change the default argument pass the sep argument to the paste function with the desired empty
character “”.

1 > var<-8470627

2 > url<-paste("http://bruins.nhl.com/club/player.htm?id=",var,sep="")

3 > url

4 [1] "http://bruins.nhl.com/club/player.htm?id=8470627"

5 > browseURL(url)

6 #No space in URL and hence can be opened in browser

The above example provides the URL for just one player but we can increment the value of the var
variable to fetch a different URL or a specific player’s statistics can be fetched by manipulating the
var variable.
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1 > var<-8470627

2 > for(i in 1:3){

3 + print(paste("http://bruins.nhl.com/club/player.htm?id=",var,sep=""))

4 + var<- var+i

5 + }

6 [1] "http://bruins.nhl.com/club/player.htm?id=8470627"

7 [1] "http://bruins.nhl.com/club/player.htm?id=8470628"

8 [1] "http://bruins.nhl.com/club/player.htm?id=8470630"

Now all the above URLs can be passed as an argument to the actual web scraping function.

Web scraping packages

• RCurl - The RCurl package is an R-interface to the libcurl library that provides HTTP facilities.
This allows us to download files from Web servers by getting forms. The primary top-level
entry points are : getURL(), getURLContent()

• XML - The XML package is necessary to parse the XML and HTML code. This also offers
access to an XPath interpreter.

• scrapeR - The scrapeR package is necessary to extract the data from the XML and HTML
documents. It provides a function scrape() that assists the user with retrieving HTML and
XML files, parsing their contents and diagnosing potential errors that may occur along the
way.

Case study of actual scraping

Let’s say that we need historical tax information for properties in Boston. This data is available
through the web at www.cityofboston.gov, although the city does not provide the data for download.

We will build an R script that “scrapes” the needed data from the relevant web page on the website
for the desired property.

In order to explain web scraping, we will consider the example of scraping the following website to
extract some useful data on Northeastern University. Website to be scraped:

http://www.cityofboston.gov/assessing/search/?pid=0402236000¹¹

¹¹http://www.cityofboston.gov/assessing/search/?pid=0402236000

http://www.cityofboston.gov/assessing/search/?pid=0402236000
http://www.cityofboston.gov/assessing/search/?pid=0402236000
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Fig. 8c - website to be scraped

Before going to the actual scraping exercise let’s look at some sample code that accesses information
on this web page.

NOTE - Source code of any web page can be easily accessed depending on the browser
used, for example to access the source code of any webpage on Google chrome just right
click anywhere on the page and select inspect element. It is advisable to select the data
of your interest and then click on inspect element so that code is directly displayed on
the highlighted part of the page.

Let’s start by building a getUrl function which will take the pid as an argument and return the URL
from which we need to scrape the data.
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1 > getUrl<- function (pid){

2 + URL<-paste("http://www.cityofboston.gov/assessing/search/?pid=",pid,sep="")

3 + return(URL)

4 + }

5

6 > pid<-"0402236000"

7 > url<-getUrl(pid)

8

9 > browseURL(url)

NOTE - Do not create a function named getURL, since you will want to use the getURL
built-in function in the RCurl library. If you do create your own getURL function,
R will overload the getURL function and your newly created function will be the
default getURL function. To specify the getURL function in RCurl, use its full name
RCurl::getURL.

1 > getURL<- function (pid){

2 + URL<-paste("http://www.cityofboston.gov/assessing/search/?pid=",pid,sep="")

3 + return(URL)

4 + }

5 > pid<-"0402236000"

6 > url<-getURL(pid)

7

8 > webpage <- getURL(url)

9 > webpage

10 [1] "http://www.cityofboston.gov/assessing/search/?pid=http://www.cityofboston.g\

11 ov/assessing/search/?pid=0402236000"

12

13 > webpage <- RCurl::getURL(url) #global scope

14 [1] "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.01 Transitional//EN\">\r\n<html>\

15 \r\n<head>\r\n<title>Parcel 0402236000 - City of Boston</title>\r\n <meta name=\\

16 "keywords\" content=\"Boston\" />\r\n <meta http-equiv=\"Content-Type\" content=\

17 \"text/html; charset=utf-8\" />\r\n \r\n <script type=\"text/javascript\" src=\"\

18 //m.cityofboston.gov/mobify/redirect.js\"></script>..............

So now we have the URL to scrape, the next step is that we need to pass the HTML to R and read it
line by line. The RCurl::getURL() function is used for this purpose.
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1 > library(RCurl)

2 > library(XML)

3 > webpage <- getURL(url)

4 > tc <- textConnection(webpage)

5 > webpage <- readLines(tc)

6 > close(tc)

7 > head(webpage,5)

8 [1] "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.01 Transitional//EN\">"

9 [2] "<html>"

10 [3] "<head>"

11 [4] "<title>Parcel 0402236000 - City of Boston</title>"

12 [5] " <meta name=\"keywords\" content=\"Boston\" />"

Once we have a variable with the entire HTML code, we can extract the data enclosed within specific
tags using the xpathApply() function.

XPath:

XPath (XML path language) is a query language for XML and HTML. It is used to traverse the
HTML structure as well as select a particular node in the HTML tree. Once a node is selected, the
function xmlValue extracts the value associated with that node. The specific path can be achieved
by defining the CSS attributes combining with class and id of HTML tags.

Fig. 8d - Highlighted code for top navigation bar

Fig. 8d shows the structure of the page to be scraped along with the HTML code.
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1 > library(RCurl)

2

3 > library(XML)

4 > webpage <- getURL(url)

5 > tc <- textConnection(webpage)

6 > webpage <- readLines(tc)

7 > close(tc)

8

9 #useInternalNodes gives webpage a list context in r

10 > pagetree <- htmlTreeParse(webpage, useInternalNodes = TRUE)

11

12 #observe the xpathapply syntax and read explanation in text below

13 > header<- unlist(xpathApply(pagetree,"//*/div[@class='topNavLinks']/div[@class=\

14 'headerTabOff']/a",xmlValue))

15 > header

16 [1] "Home" "Online Services" "Residents" "Business"

17 [5] "Visitors" "Students" "Government"

The htmlTreeParse function in the XML package generates an R structure representing the XM-
L//HTML tree.

In the example above the xpathApply statement is accessing the value associated with the top
navigation bar. In the above statement, we passed three arguments:

1. Variable containing R structured HTML tree.
2. Pattern to find the appropriate node.
3. xmlValue to extract the value of the selected nodes.

Xpath syntax:

The second argument, which takes a pattern to find the appropriate node, works on the fundamental
syntax of XPath:

1. A single slash (/) specifies to select a node from the root.
2. A double (slash (//) specifies to select nodes from anywhere in the document.
3. The ampersand (@) specifies to select CSS/HTML attributes enclosed within square brackets.

Just with these above three statements, any node can be accessed on any page with the correct
pattern. In the example above, the XPath statement will read something like this: “Select all (*)
nodes anywhere in the document with div class = topNavlinks, div class = headerTabOff and link
(a)”



Chapter 8 109

Actual scraping example

All the information on this page is not desirable, so we will first define what all information is
needed for our purpose and then we will scrape that information.

Fig 8e. - Highlighted information will be scraped

As we can see in the above image, only the information highlighted in yellow is extracted.



Chapter 8 110

1 # Load the required libraries

2 library(RCurl)

3 library(XML)

4

5 #Set the working directory to your workspace

6 setwd("C:/Users/Martin/Desktop")

7

8 # This is the URL of the website we need scrape to get information on the

9 # total assessed value of Northeastern University's properties

10

11 getUrl<- function (pid){

12

13 URL<-paste("http://www.cityofboston.gov/assessing/search/?pid=",pid,sep="")

14

15 return(URL)

16 }

17 pid<-"0402236000"

18

19 #This pid is the value of pid given in URL of webpage

20

21 theurl<-getUrl(pid)

22

23 webpage <- getURL(theurl)

24

25 # convert the page into a line-by-line format rather than a single string

26 tc <- textConnection(webpage)

27 webpage <- readLines(tc)

28 close(tc)

29

30

31 pagetree <- htmlTreeParse(webpage, useInternalNodes = TRUE)

32

33 parcelID <- unlist(xpathApply(pagetree,"//*/table[@width='100%']

34 [@cellpadding='0']/tr[3]/td",xmlValue))

35 parcelID

36

37 ownerName <- unlist(xpathApply(pagetree,"//*/table[@width='100%']

38 [@cellpadding='0']/tr[9]/td",xmlValue))

39 ownerName

40

41 totalValueLabel <- unlist(xpathApply(pagetree,"//*/table[@width='100%']

42 /tr[5]/td/b",xmlValue))



Chapter 8 111

43

44 ttLabel<- unlist(strsplit(totalValueLabel, ":"))

45 ttLabel[2]

46

47 totalValueText <- unlist(xpathApply(pagetree,"//*/table[@width='100%']

48 /tr[5]/td[@align = 'right']",xmlValue))

49

50 ttText <- unlist(strsplit(totalValueText, " "))

51

52 ttText <- gsub(pattern = "([\t\n])",

53 replacement ="" , x = ttText[2], ignore.case = TRUE,

54 perl = FALSE, fixed = FALSE, useBytes = FALSE)

55 ttText

56

57 x <- unlist(xpathApply(pagetree, "//*/table[@width='100%']/tr[2]

58 /th[@align='center']", xmlValue))

59 y <- unlist(xpathApply(pagetree, "//*/table[@width='100%']/tr

60 /td[@align='center']", xmlValue))

61 content <- as.data.frame(matrix(y, ncol = 3, byrow = TRUE))

62 new.line.3 <- gsub(pattern = "([\t\n])",

63 replacement ="" , x = x, ignore.case = TRUE,

64 perl = FALSE, fixed = FALSE, useBytes = FALSE)

65 new.line.3

66 content

The above code can be broken down into 5 major steps which will serve as a good template to make
a scraper from scratch.

1. URL manipulation
2. Get the web page via its URL
3. Parse the HTML that defines the page
4. Extract leaf items which have the data
5. Clean the extracted data

URL manipulation -

Making a function to generate an URL makes the scraper parameterized and easy to use.
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1 getUrl<- function (pid){

2

3 URL<-paste("http://www.cityofboston.gov/assessing/search/?pid=",pid,sep="")

4

5 return(URL)

6 }

Get the web page via its URL

Download the raw HTML content of the webpage using these two functions:

1 webpage <- getURL(theurl)

2

3 webpage <-readLines(tc<-textConnection(webpage));

Parse the HTML that defines the page

Transform the raw HTML into a more convenient format to work with using htmlTreeParse().
Setting useInternalNodes=TRUE allows one to access the parent and ancestor nodes.

1 pagetree <- htmlTreeParse(webpage, useInternalNodes = TRUE)

Extract leaf items which have the data

Use xpathApply() to extract the leaf items in the HTML document. To eliminate undesired matches,
the query restricts the high-level table attribute to width=100% and table heading attribute aligned
to center. xmlValue is convenient for extracting the text value of the node.

1 parcelID <- unlist(xpathApply(pagetree,"//*/table[@width='100%'][@cellpadding='0\

2 ']/tr[3]/td",xmlValue))

3 parcelID

4

5 ownerName <- unlist(xpathApply(pagetree,"//*/table[@width='100%'][@cellpadding='\

6 0']/tr[9]/td",xmlValue))

7 ownerName

8

9 totalValueLabel <- unlist(xpathApply(pagetree,"//*/table[@width='100%']/tr[5]/td\

10 /b",xmlValue))

11 ttLabel<- unlist(strsplit(totalValueLabel, ":"))

12 ttLabel[2]

13

14 totalValueText <- unlist(xpathApply(pagetree,"//*/table[@width='100%']/tr[5]/td[\

15 @align = 'right']",xmlValue))
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The most important argument for xpathApply is to recognize the unique pattern required to access a
particular node, CSS/HTML attributes are used to build a unique pattern. Any pattern can be made
more specific by adding more attributes. for example, in an earlier example to fetch the header tab,
we can make the xpath more specific by adding the id attribute (@id=’Home Tab’).

1 > header<- unlist(xpathApply(pagetree,"//*/div[@class='topNavLinks']/div[@class=\

2 'headerTabOff']/a",xmlValue))

3 > header

4 [1] "Home" "Online Services" "Residents" "Business"

5 [5] "Visitors" "Students" "Government"

6 > home<- unlist(xpathApply(pagetree,"//*/div[@class='topNavLinks']/div[@id='Home\

7 Tab']/a",xmlValue))

8 > home

9 [1] "Home"

Clean the extracted data

The R global substitution function gsub() changes the “\t\n” combination to an empty string(“”).
Cleaning scraped data is another task imprtant task for the data scientist.

1 new.line.3 <- gsub(pattern = "([\t\n])",

2 replacement ="" , x = x, ignore.case = TRUE,

3 perl = FALSE, fixed = FALSE, useBytes = FALSE)

Finally, data is scraped, cleaned and ready for the analysis.
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Fig. 8f - Cleaned data



Chapter 9
Data collection through web APIs

As the internet continues to grow, the amount of data available has increased substantially. Web
API’s make data available through a request-response interface similar to a function call.

A web API is an application programming interface (API) for either a web server or a web browser
called server side API and client side API respectively. Client side web API extends the browser
functionality via standardized javascript. Server side web API defines a request-response message
system using either JSON or XML. JSON or XML are used to encode request and response.

In other words, API is an Application Programming Interface that provides call functionality of some
service. The service can be computational or data related (storage/retrieval). Web APIs are different
than traditional web services that are based on SOAP; they are more light-weight as they use the
REST architecture.

REST

REST stands for REpresentational State Transfer. REST is an architectural style, a communication
protocol to connect between machines using simple HTTP to make calls. RESTful applications uses
HTTP for all four CRUD operations (Create/Read/Update/Delete). Rest services are:

1. Platform independent
2. Language independent
3. Use Standardized protocols

Let’s look at a very simple example of a query using API through R.

1 Query='select share_count,like_count,comment_count from link_stat where url="'

2 pageUrl="http://bigthink.com/praxis/a-three-question-quiz

3 -to-test-your-rationality"

4

5 APIUrl = paste('http://graph.facebook.com/fql?q=',Query,pageUrl,'"')

6 lookUp <- URLencode(APIUrl)

7 browseURL(lookUp)

The above code uses a query statement to retrieve the number of times a specific web page is shared
on Facebook, liked on Facebook and the number of comments.

NOTE - the URLencode function used in the above code, removes spaces from the URL
name and replaces them with the hexadecimal value for a space i.e. “%20”.
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Structure of web API requests

1. API endpoint using URL manipulation.
2. Retrieving data generated by API in either JSON or XML format.
3. Parametrizing the requests.

Let’s see how we can use this structure with the above API query.

1 > library(rjson)

2 > library(RCurl)

3

4 > fbStats<-function(URL){

5 + Query='select share_count,like_count,comment_count

6 from link_stat where url="'

7 + APIUrl = paste('http://graph.facebook.com/fql?q=',Query,URL,'"')

8 + APIUrl <- URLencode(APIUrl)

9 + r<-getURL(APIUrl) #same code as web scraping

10 + root<-fromJSON(r) #converting JSON to list like we converted HTML

11 + share<-root$data[[1]]$share_count

12 + likes<-root$data[[1]]$like_count

13 + comments<-root$data[[1]]$comment_count

14 + #extracted data from the list

15 + return(data.frame(share,likes,comments))

16 + }

17

18 > URL="http://bigthink.com/praxis/a-three-question-quiz-to-test-your-rationality"

19 # Instead of above link you can use the link of any page shared on Facebook

20 > stats<-fbStats(URL)

21 > stats

22 share likes comments

23 1 1775 4266 1462

This is the structured code for the same API request, let’s see the structure in detail:

API endpoint using URL manipulation

URL manipulation is used to reach the API endpoint, where the response from the API is displayed.
If you browse the content of APIUrl variable, without the quotes around it, you can observe the
response from API.
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Fig. 9a - Response from API

Details of endpoint URL of famous API’s can be found on this link of compiled API list. API
directory¹²

Retrieving data generated by API in either JSON or XML format-

After reaching the API endpoint in a correct way, the next step requires to fetch the data and shape
for analysis. Data is retrieved differently depending upon the format of the response.

a. XML data - Use library XML and functions xmlTreeParse() or xmlToDataFrame() to pass the
data to R and then manipulate data in R.

b. JSON data - JSON data first needs to be passed to R, we can either use readLines() function or
the getURL() function from the RCurl library as both the functions are familiar.

NOTE - The readLines function cannot parse a secure web page i.e. if the API endpoint
is returning a secure page (HTTPS://…) then use the getURL function.

Once we have the data in R, we use the fromJSON() function within the rjson library to convert the
format into a JSON list which can be easily manipulated in R using $ sign to capture the recurring
instance of anything in the JSON list.

1 > library(rjson)

2 > library(RCurl)

3

4 > URL="http://bigthink.com/praxis/a-three-question-quiz-to-test-your-rationality"

5 > Query='select share_count,like_count,comment_count from link_stat where url="'

6 > APIUrl = paste('http://graph.facebook.com/fql?q=',Query,URL,'"')

7 > APIUrl <- URLencode(APIUrl)

8 > r<-getURL(APIUrl)

9 > root<-fromJSON(r)

10

¹²http://www.programmableweb.com/apis/directory

http://www.programmableweb.com/apis/directory
http://www.programmableweb.com/apis/directory
http://www.programmableweb.com/apis/directory
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11 > root

12 $data

13 $data[[1]]

14 $data[[1]]$share_count

15 [1] 1775

16

17 $data[[1]]$like_count

18 [1] 4270

19

20 $data[[1]]$comment_count

21 [1] 1462

Parameterizing the requests

It’s always a good idea to parameterize the request in order to increase the ease of usage of the API
request. In the above example, we made a function called fbStats which takes a URL as an argument
and returns the share counts, the likes counts and the comment counts of this URL on Facebook. By
making it parameterized, we can now simply change the value of the URL variable and can fetch
the Facebook statistics of any page.

This was just a simple example of API request processing, Next we will see nesting API requests
using static maps API and finally we will see YouTube API and twitter API which require two
different authentication process before actually fetching any data.

Nesting API requests

1 library(RCurl)

2 library(rjson)

3 library(plyr)

4

5 #getLocation function returns the latitude and longitude of

6 #any address via google maps api.

7

8 #fetchUrl function gives the url to fetch json string (endpoint url)

9 fetchUrl <- function(address) {

10 root <- "http://maps.google.com/maps/api/geocode/" #root url

11 u <- paste(root, "json", "?address=", address, "&sensor=false", sep = "")

12 return(URLencode(u)) #encoding the url

13 }

14

15

16 getLocation <- function(address) {

17 #getting the url for the address,
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18 #I suggest to take a look at this URL before further exploring the code

19 url <- fetchUrl(address)

20 #just run this fetchUrl command outside the function and open the URL in brows\

21 er

22

23 json <- getURL(url)

24 x <- fromJSON(json) #getting the json

25 if(x$status=="OK") {

26 #checking if the Address url used produces the correct json string

27 lat <- x$results[[1]]$geometry$location$lat

28 lng <- x$results[[1]]$geometry$location$lng

29 location_type <- x$results[[1]]$geometry$location_type

30 formatted_address <- x$results[[1]]$formatted_address

31 return(c(lat, lng, location_type, formatted_address))

32 Sys.sleep(0.5)

33 } else {

34 return(c(NA,NA,NA,NA))

35 }

36 }

37 address <- c("Northeastern Universty, Boston, MA",

38 "Harvard University, Boston, MA")

39 locations <- ldply(address, function(x) getLocation(x))

40

41 names(locations) <- c("lat", "lon", "location_type", "formatted")

42 locations

43

44 #Another function to access static maps

45 staticURL<-function(latitude,longitude,zoom,maptype){

46 base="http://maps.googleapis.com/maps/api/staticmap?center="

47 suffix ="&size=800x800&sensor=false&format=png"

48

49 target <- paste0(base,latitude,",",longitude,"&zoom=",zoom,

50 "&maptype=",maptype,suffix)

51

52 return(target)

53 }

54

55 test<-staticURL(locations$lat[1],locations$lon[1],"13","hybrid")

56 #enter latitude and longitude, zoom values range from 1 - 18,

57 #maptypes can be- hybrid,satellite,terrain,roadmap

58

59 browseURL(test)
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60 download.file(test,"test.png", mode = "wb")

The above example is an example of nesting API requests, since we pass the result from one API to
another API. Our example uses Google maps’ geocoding API to fetch the longitude and latitude of a
specific location. We then pass these returned results to Google’s static maps API to retrieve a map
file for this specific location.

Using APIs after authentication

The authentication process is supplied to make sure that data is secure and cannot be misused. By
generating these keys, you are actually registering your credentials so that an API manager can track
who is using what data. There are many types of authentication processes, but we will discuss only
two types in this book.

1. Generating a consumer key and oauth token - Twitter API
2. Generating a browser key - YouTube API

Twitter API

We will use the Twitter Streaming API to get tweet data using R. Through the Twitter WebAPI,
external applications can retrieve Twitter tweet data in JSON format. If a user wants to access the
tweet data through the Web API, a user needs to register the application with Twitter.

Registering your Application on Twitter.

To run this script, you need to generate your own “consumerKey”, “consumerSecret”, oauth_token
and oauth_token_secret by registering your application with Twitter. The process is the following:

1. Register it here: Twitter Apps¹³. Go to Create New App.
2. Enter a name for your application. e.g “Data Science NEU”. Enter a description for the app

e.g. “Getting tweet data using streaming API in R”. For the website, enter a placeholder e.g.
“http://www.google.com”. The callback URL field is optional. Scroll down the page. Check the
license agreement. And click on “Create your Twitter Application”. Your application has been
successfully created.

3. Under the API Keys Tab, you will see an API Key and an API Secret. For the oAuth_token and
oauth_token_secret scroll down the page and click on the button “Create my access token”.
Refresh the page if necessary and you will now see the access token and the access token
secret. Note: To check the current working directory use the command getwd() in RStudio.

Once you have the twitter credentials ready, enter the keys in the code given below:

¹³https://dev.twitter.com/apps

https://dev.twitter.com/apps
https://dev.twitter.com/apps
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Environment Setup:

Step 1: Change theworking directory from “C:/Users/loginName/Documents” to “C:/Users/loginName/Desktop”
using the following line of code. setwd(“C:/Users/loginName/Desktop”)

Step 2: Load the required libraries needed to use twitter.

• library(base64enc)
• library(RCurl)
• library(ROAuth)
• library(streamR)
• library(twitteR)
• library(httr)

NOTE: If you generate a message similar to this: “ Error in library(RCurl) : there is no package called
‘RCurl’ “ that means the RCurl package has not been installed. To fix the error, in Rstudio’s console
window type the following command:

1 install.packages("RCurl")

and hit Enter. The package RCurl will be installed. Repeat the procedure for all the libraries you
need to load.

Step 3: Download the certificate needed for authentication. This creates a certificate file on the
desktop since you set your desktop as R’s working directory.

1 download.file(url="http://curl.haxx.se/ca/cacert.pem",destfile="cacert.pem")

Step 4: Create a file to collect all the Twitter JSon data received from the API call.

1 outFile <- "tweets_sample.json"

Step 5: Set all the Configuration details to authorize your application to access Twitter data.
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1 #Twitter configuration

2 requestURL <- "https://api.twitter.com/oauth/request_token"

3 accessURL <- "https://api.twitter.com/oauth/access_token"

4 authURL <- "https://api.twitter.com/oauth/authorize"

5 consumerKey <- "XXXX"

6 consumerSecret <- "XXXX"

7 oauth_token <- "XXXX"

8 oauth_token_secret <-"XXXX"

The requestURL, accessURL and authURL remain the same. For the consumerKey, consumerSecret,
oauth_token, oauth_token_secret you need to create a developer’s account on Twitter. The XXXX
strings should be replaced with the corresponding values from the twitter API web page.

Source Code

1 ############################################################

2 ## Big Data with Twitter

3 ## Collecting Twitter Data from Straming API

4 ## Sample intro course material. Demonstrates how to collect

5 ## some basic data from Twitter (though streaming API).

6 ##

7 ## To run this script, you need to generate your own

8 ## "consumerKey", "consumerSecret",

9 ## and an oAuth token by registering your application with Twitter.

10 ## It is a simple process, just pick a name for your application.

11 ##

12 ## Register it here: https://dev.twitter.com/apps

13 ##

14 ## Documentation of Twitter Streaming API:

15 ## https://dev.twitter.com/docs/streaming-apis/streams/public

16 ## https://dev.twitter.com/docs/auth/authorizing-request

17 ## http://www.foundations-edge.com/blog/oauth_in_R.html

18 ## https://dev.twitter.com/docs/streaming-apis/processing

19 ##

20 ## Prepared by Christoph Riedl

21 ## D'Amore-McKim School of Business &

22 ## College of Computer and Information Science

23 ##

24 ## web: http://www.christophriedl.net

25 ############################################################

26

27 ## Change working directory: create folder and adjust according to taste
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28 setwd("C:/Users/Brinal/Desktop")

29

30 # Load required libraries

31 library(base64enc)

32 library(RCurl)

33 library(ROAuth)

34 library(streamR)

35 library(twitteR)

36 library(httr)

37

38 download.file(url="http://curl.haxx.se/ca/cacert.pem", destfile="cacert.pem")

39

40 # Configuration for twitter

41 outFile <- "tweets_sample.json"

42

43 # Twitter configuration

44 requestURL <- "https://api.twitter.com/oauth/request_token"

45 accessURL <- "https://api.twitter.com/oauth/access_token"

46 authURL <- "https://api.twitter.com/oauth/authorize"

47 consumerKey <- "XXXX"

48 consumerSecret <- "XXXX"

49 oauth_token <- "XXXX"

50 oauth_token_secret <- "XXXX"

51

52 my_oauth <- OAuthFactory$new( consumerKey=consumerKey,

53 consumerSecret=consumerSecret,

54 requestURL=requestURL,

55 accessURL=accessURL, authURL=authURL)

56

57 my_oauth$handshake(cainfo="cacert.pem")

58

59 ##Once executing the above code returns true.

60 ##You will be given a link to authorize your application to get twitter feeds.

61 ##Copy the link in your browser. Click on Authorize MyApplication.

62 ##You will receive a pin number.

63 ##Copy the pin number and paste it in the console.

64 ##Once your application has been authorized you need

65 ## to register your credentials.

66

67 setup_twitter_oauth(consumerKey, consumerSecret, oauth_token, oauth_token_secret)

68

69 # Press 1 to allow the file to access the credentials
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70

71 ##Now start reading tweets

72 sampleStream( file=outFile, oauth=my_oauth )

73

74 ##Alternative: a little more advanced if you want to filter for things

75 follow <- "" # TwitterIDs (not screennames!) of peple to follow

76 track <- "Boston,RedSoxs" # Comma-separated list of words to filter for

77 location <- c(23.786699, 60.878590, 37.097000, 77.840813) # Geolocation of twee\

78 ts to filter for (see documentation)

79

80 filterStream( file.name=outFile, follow=follow, track=track,

81 locations=location, oauth=my_oauth, timeout=10800)

82

83 #This creates a file on the desktop tweets_sample.json in which the tweet data w\

84 ill be stored.

Note: If the above code is not working on your system then its because of your antivirus
software blocking the port to access twitter API. You need to turn off your firewall in
order to run this code.

YouTube API

We use the YouTube API to fetch data using R. Using the YouTube API, we can retrieve information
like the number of videos uploaded on any channel, retrieve the number of video views, the number
of video likes, or the number of video dislikes. Data retrieved can be shaped using R making it
conducive to analysis. To fetch any data using the YouTube API, a user must register as a Google
console developer. This allows Google to track the data retrieved and potentially charge a user for
its services. In this demonstration, we will play with a smaller dataset, which is free for public use.
Like the twitter API, Google also provides the option of oauth authentication but in this example
we will see a way to bypass oauth authentication by generating a browser key.

Registering your Application at the Google developer console

To run this script you need to generate your own “browserKey” by creating a new project at the
Google developer console web page and registering for a YouTube API.

1. Login with your gmail ID on: Google developer console¹⁴
2. Click on create a project to create a new project for the youtube API. Enter a name for your

project like “Youtube data collection”. Once the project is all set, click on the APIs and auth to
expand the links in the dashboard on the left and click on APIs. Click on the first link under the
youtube APIs section named YouTube Data API and then click on enable API to use YouTube
Data API v3.

¹⁴https://console.developers.google.com/project

https://console.developers.google.com/project
https://console.developers.google.com/project
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3. The next step is to generate a browser key; a browser key is required to fetch any data from
the YouTube API. Click on the credentials link, under the APIs link, then the auth tab on the
left side of the dashboard. Under the public API access section, click on “create a new key”.
Different keys can be generated based on how the data is fetched. We are going to fetch data
through the browser so we generate a browser key. Click on browser key, you can add referrers
if you are fetching data from any other website. In this example, we leave the field blank since
we are retrieving the data from R. Click on create and copy the generated key for later use.

Environment Setup :

Step 1: Change the working directory to Desktop using setwd command:

Mac users: setwd(“/Users/username/Desktop”)

Windows: setwd(“C:/Users/username/Desktop”)

Step 2: Load the following libraries after installing their packages.

1 install.packages(“RCurl”)

2 install.packages(“rjson”)

3 library(RCurl)

4 library(rjson)

The RCurl library is used to scrape data from webpages. We will use the function getURL to
retrieve the HTML elements into R variables. The rjson library provides functions to manipulate
json elements. In this example, we use the fromJSON function to convert the JSON string to an R
list.

Step 3: Set the browser key to the key generated in the above steps:

1 Key<- “XXXX”

Step 4: Obtaining a YouTube video id:

In this first example, we will fetch statistics on a video. This example, will ensure our API connection
provides connectivity. To fetch a video id, Open YouTube and browse to any video that you
would like to collect statistics. After you are on the video page, the URL will look some like this:
https://www.youtube.com/watch?v=RgKAFK5djSk¹⁵

In this URL, anything after the “v=” is the video ID.Wewill need to pass this video ID as an argument
to our stats function.

Step 5: Obtaining a YouTube channel id:

¹⁵https://www.youtube.com/watch?v=RgKAFK5djSk

https://www.youtube.com/watch?v=RgKAFK5djSk
https://www.youtube.com/watch?v=RgKAFK5djSk
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As part of our second example, we will fetch statistics of videos on a particular YouTube channel. To
get a channel ID go to YouTube¹⁶ and on the left side dashboard click on browse channels. Using the
search channel search box, search for any channel. Click on the link for any channel, the URL should
look something like this: https://www.youtube.com/channel/UCz6NJuz0ss3TxW7Fw4h_KIg¹⁷

In this URL anything after channel, is a channel ID i.e. UCz6NJuz0ss3TxW7Fw4h_KIg.

NOTE - sometimes youmight get a URL like this: https://www.youtube.com/user/superherosachin¹⁸
It just means that this is not a channel but a user. Click some other link to find the
channel.

Source Code

1 ############################################################

2 ## Big Data with YouTube

3 ## Collecting YouTube Data from Streaming API

4 ##

5 ##

6 ##

7 ## To run this script, you need to generate your own "browserKey"

8 ## by registering your application with Google.

9 ## It is a simple process, just pick a name for your project.

10 ## Register it here: https://console.developers.google.com/project

11 ##

12 ## Collecting Data via WebAPIs in R

13 ## Martin Schedlbauer, Ph.D., Yatish Jain

14 ##

15 ## Prepared by Yatish Jain

16 ## email: jain.ya@husky.neu.edu

17 ##

18 ##

19 ##

20 ##

21 ############################################################

22

23 ## change the working directory to desktop to keep track of output file.

24 setwd("/Users/username/Desktop")

25 getwd()

26

27 # Load required libraries

¹⁶http://www.youtube.com
¹⁷https://www.youtube.com/channel/UCz6NJuz0ss3TxW7Fw4h_KIg
¹⁸https://www.youtube.com/user/superherosachin

http://www.youtube.com/
https://www.youtube.com/channel/UCz6NJuz0ss3TxW7Fw4h_KIg
https://www.youtube.com/user/superherosachin
http://www.youtube.com/
https://www.youtube.com/channel/UCz6NJuz0ss3TxW7Fw4h_KIg
https://www.youtube.com/user/superherosachin
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28 library(rjson)

29 library(RCurl)

30

31 #Generate your own key as per the instructions in document

32 #and paste it here to configure the API

33 key<- "XXXX"

34

35

36 #Funtion to check connection.

37 #This getStats function will fetch the statistics of

38 #any video given the video ID and key.

39 #Read instructions on how to get the video ID under the environment setup section

40

41 getStats <- function(id,key){

42 url=paste("https://www.googleapis.com/youtube/v3/videos?id=",id,

43 "&key=",key,"&part=statistics,snippet",sep="")

44 raw.data <- getURL(url)

45 rd <- fromJSON(raw.data,unexpected.escape = "skip")

46 if(length(rd$items)!= 0){

47 title<- rd$items[[1]]$snippet$title

48 channelTitle<- rd$items[[1]]$snippet$channelTitle

49 description<-rd$items[[1]]$snippet$description

50 views<- rd$items[[1]]$statistics$viewCount

51 likes<- rd$items[[1]]$statistics$likeCount

52 if(is.null(likes)){

53 likes<-"Info Not available"

54 }

55 dislikes<- rd$items[[1]]$statistics$dislikeCount

56 if(is.null(dislikes)){

57 dislikes<-"Info Not available"

58 }

59 fav<- rd$items[[1]]$statistics$favoriteCount

60 if(is.null(fav)){

61 fav<-"Info Not available"

62 }

63 comments<- rd$items[[1]]$statistics$commentCount

64 if(is.null(comments)){

65 comments<-"Info Not available"

66 }

67

68 return(data.frame(title,description,channelTitle,views,likes,dislikes,fav,comm\

69 ents))
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70 }

71 }

72

73 #getVideos function return the list of videos along

74 #with their statistics given the channelID and key.

75 # Read the instructions on how to get channelID under the environment setup sect\

76 ion

77

78 getVideos<- function(channelID,key){

79 url=paste("https://www.googleapis.com/youtube/v3/search?key=",key,

80 "&channelId=",channelID,"&part=snippet,id&order=date&maxResults=10",sep="")

81 raw.data <- getURL(url)

82 rd <- fromJSON(raw.data)

83 perPage<- rd$pageInfo$resultsPerPage

84 totalResults<-rd$pageInfo$totalResults

85 totalVideos<-min(perPage,totalResults)

86 stats<-c(as.character(),as.character(),as.character(),as.integer(),

87 as.integer(),as.integer(),as.integer(),as.integer())

88 for (i in 1:totalVideos){

89 kind<- rd$items[[i]]$id$kind

90 if(kind == "youtube#video"){

91 videoID<- rd$items[[i]]$id$videoId

92 print(videoID)

93 stats<-rbind(stats,getStats(videoID,key))

94

95 }

96 else if(kind == "youtube#playlist"){

97 playlistID<- rd$items[[i]]$id$playlistId

98 url=paste("https://www.googleapis.com/youtube/v3/playlistItems?

99 part=snippet%2CcontentDetails&maxResults=10&playlistId=",

100 playlistID,"&key=",key,sep="")

101 raw.data <- getURL(url)

102 rd1 <- fromJSON(raw.data)

103 perPage<- rd1$pageInfo$resultsPerPage

104 totalResults<-rd1$pageInfo$totalResults

105 totalVideos<-min(perPage,totalResults)

106 for(i in 1:totalVideos){

107 videoID<-rd1$items[[i]]$contentDetails$videoId

108 print(videoID)

109 stats<-rbind(stats,getStats(videoID,key))

110 }

111 }
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112

113 }

114

115 return(stats)

116 }

117

118

119 #getChannelsOrPlaylists function return the list of videos

120 #and their statistics associated with a keyword search on YouTube.

121 # When you search a keyword on youtube sometimes playlists

122 # also end up in search and we fetch the data from those

123 # playlists as well which might not be directly related

124 # to our search keyword, but it will fetch the data of similar searches.

125

126 getChannelsOrPlaylists<- function(search, key){

127 search<-URLencode(search)

128 url<-paste("https://www.googleapis.com/youtube/v3/search?q=",search,

129 "&key=",key,"&type=channel&part=snippet&maxResults=50",sep="")

130 raw.data <- getURL(url)

131 rd <- fromJSON(raw.data)

132 perPage<- rd$pageInfo$resultsPerPage

133 totalResults<-rd$pageInfo$totalResults

134 totalChannels<- min(perPage,totalResults)

135 data<-c(as.character(),as.character(),as.character(),as.integer(),

136 as.integer(),as.integer(),as.integer(),as.integer())

137 for(i in 1:totalChannels){

138 channelID<- rd$items[[i]]$id$channelId

139 print(channelID)

140 if(!is.null(channelID)){

141 data<-rbind(data,getVideos(channelID,key))

142 }

143 }

144 data<- data[complete.cases(data),]

145 data<-unique(data)

146 write.csv(data,"data.csv",row.names=F)

147

148 }

149

150 search<-"taylor swift"

151 getChannelsOrPlaylists(search,key)
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Storage of data

There are mainly two types of storage mechanisms:

• Relational Databases
• Non-relational Databases

Relational Databases

A relational database is a digital database used to store structured data with a given set of rules. A
relational database is composed of relations or relational tables. A relation is manifested as a table.
Data is stored in one or more tables, where the rows correspond to instances of the relation and the
columns correspond to the variables or the attributes of the relation. In a relation, each row must be
differentiated by a primary key. A key is a collection of fields that provide a unique value for each
row.

When mapping the real world objects to tables, typically data is separated into different tables in
order to minimize redundancy of data. Duplication of a particular data field within two tables,
typically represents a relationship between the two tables. Before building a database, one needs to
understand the types of questions that need to be answered from the data. The layout or schema of
the database will be driven by this required functionality.

Relational Data Model

A relational data model represents all real world objects and relationships between objects as a two
dimensional table. There are methods for representing a data model graphically, one such method is
the Unified Modeling Language or UML. In UML, objects are represented as boxes and relationships
between 2 objects are represented via lines. When a relationship exists among more than 2 objects,
we represent the relationship as a diamond. In this chapter we consider only binary relationships;
relationships between two objects.

For the purpose of this book, we will use a very small dataset of the library which can be accessed
here¹⁹.

This library dataset has the following columns: StudentID, StudentName, StudentEmail, BookName,
BookGenre, AuthorName, AuthorDetails. Our goal is to convert this flattened version of the data
into a collection of relations or tables. We need to identify the variables that are associated with real
world objects. We do this by answering the following questions:

¹⁹https://drive.google.com/file/d/0B9uiGI8JEJw5X1U5dzNOdEhPcXc/view

https://drive.google.com/file/d/0B9uiGI8JEJw5X1U5dzNOdEhPcXc/view
https://drive.google.com/file/d/0B9uiGI8JEJw5X1U5dzNOdEhPcXc/view
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1. What are the real world objects represented by these variables
2. What are the relationships between the real world objects?
3. What are the questions we want to answer from this data?

Fig. 10a - Library dataset

We can insert this csv file directly into an SQL database but there is a problemwith this if we want to
minimize data redundancy. Let’s look at the first 5 columns in the file, many students are issued the
same book. For example Michelle and Scott are both issued the book “And the Mountains Echoed”.
We should not store all of the books data with each student. This is leading to redundancy of all book
data fields whenever a student is assigned that specific book. Also, remember our goal is to identify
a subset of columns that can be used as a primary key. We need to separate the real world student
objects from the real world book objects. The way we do this is by creating a Student table and a
Book table. We do not want to lose the Student’s book assignment, so we create another table or
field that allows us to store this relationship between specific student instances and book instances.

Fig. 10b - Book table

To create the Book table, we created a unique ID, that differentiates each row in the book table. This is
the primary key of the book table.We also create a Student table that stores all of the known variables
about the student. Once again we create a unique field for the student table, it is called StudentID.
It is the primary key for the student table. In order to not lose the book assignment for each student,
we store the BookID within the Student table to represent the assignment. We use the primary key,
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BookID, from the Book table since this column is guaranteed to differentiate the different books.
The BookId is found within both the Book Table and the Student Table, so there is some redundancy
within the relational model. However, it is minimal redundancy since this redundancy represents
the book assignment for the student. The other fields associated with the Book is not duplicated for
each Student. When we have a field that represents a relationship between two tables, it is known
as a foreign key. It is a field that represents a unique entity in another table. As expected, foreign
keys need not be unique like primary keys. In our example, many students both Michelle and Scott
are assigned to book 105. This does not violate any constraints on the schema.

Fig. 10c - Student table

Similarly, we can make a separate table for the real world authors that write books. This would
remove the redundancy of the author’s columns within the Book table. This can be done by making
a foreign ID of AuthorID in Book table.

Before wemove on to define the relationships between these tables to make a data model, let’s define
some keywords we will be using frequently.

Important Definitions

1. Primary Key is a field or collection of fields defined in a table to uniquely identify each row
of a table. The primary key should be unique and not null for any row. The primary key is the
selected candidate key to be used as the primary key.

2. Foreign Key is a field that references a unique row of another table. Unlike a primary key
foreign key need not be unique.

3. Attributes are all the fields or columns of any table. For example BookID, BookName and
BookGenre are the attributes of Book table.

4. Entity is a person, place, thing or concept about which data can be collected. Example Student,
Book, Author are all entities. They correspond to real world objects.

5. Composite Key takesmore than one attribute to uniquely identify an entity occurrence.When
there is not one field that can differentiate the entity occurrences, we can usemultiple columns
to define the primary key.
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6. Candidate Key is any field or collection of fields that qualify as a primary key. Example
BookName can be a candidate key in book table.

Relationships

Within a relationship, we track the number of instances from each entity participating in the
relationship. We also track if each instance in the table is required to participate in the relationship.
If each instance in the relation is required to participate in the relationship, then the relationship
is mandatory. If an instance of a relation is not required to participate in a relationship then the
relationship is considered optional.

Fig. 10d - Relationship symbols

One-to-one relationship:

This relationship is rarely used in practice and is mainly used to segregate the set of columns which
are rarely queried. When for each row of one table, there is a corresponding entry in another table,
then the relationship between two tables is said to be a one to one relationship. For example: if we
assume we will not be querying AuthorDetails much, then we can separate AuthorDetails column
into a separate column.

One-to-many relationship:

A one to many relationship exists when for each row within one table there exists at least one
corresponding row in the other table and at most many rows in the other table. In our example, one
book can be issued to many students and one author can write more than one book.
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Fig. 10e - One to many relationship

NOTE - Check the other notation to mark the one to many relationship using the 1 and
infinity symbols similar to single pipe and three arrows as shown in Fig. 10d.

Many-to-many relationship:

A many to many relationship exists when one or more rows of a table can be related to zero, one
or more rows of another table. In our example we are working with a small dataset where one book
has only one author but if we extend the schema to support multiple authors for a book, then we
create a many to many relationship between Book and Author since 1 book can be written by many
authors and 1 author can write many books.

Our current schema cannot support the many to many relationship, we need to create a table that
allows us to store the corresponding Authors to a specific book. We create a table BooktoAuthor
(intermediary) table that allows us to track the corresponding relationship between Authors and
Books. The BooktoAuthor (intermediary) table would have a composite primary key that consists
of the BookId and the AuthorId. Each row in this table represents a relationship between Books and
Authors.

Fig. 10f - many to many relationship
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Data Normalization

Data normalization is the process of removing unnecessary redundancy from a database. There are
specific steps in data normalization. Each step leads the database to a higher normal form. Data that
has not been through the data normalization process is not in normal form.

The first normal form (1NF) ensures that each field is an atomic value. Each field cannot be a
collection or set of values, it must be a single value. In other words each row of every column
must have only one value, there cannot be more than one value separated by comma or any other
delimiter. For example, one book can have many authors but all the authors of one book cannot be
stored in the same row neither can we make a separate column to add author 1, author 2 etc.

Fig. 10g - Data not following 1NF

To make the above data follow 1NF we make separate tables for students, books and authors as
shown above and then there is no need to have more than a single value in any row.

For the data to be in Second normal form (2NF) it should meet an additional criterion after
following 1NF i.e. any non-key attribute should depend entirely on the primary key. 2NF mainly
comes into picture when we consider composite primary key as we need to make sure in such cases
that any non-key column should be dependent on the entire primary key not on just one column of
the composite primary key.

Consider the following example of events table:

Fig. 10h - Data not following 2NF

In the above table, we are using a composite primary key of Course and Date. So according to our
definition all the non-key attributes i.e. CourseTitle, Room, Capacity, Available should depend on
the entire primary key. However, if we take a closer look, CourseTitle depends only on the field
Course. Now the question is how can we change it to follow 2NF. The simplest solution is to create
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a Course table that contains all the fields for the Course. In our example the Course table would
consist of the Course field and the CourseTitle field.

For the data to be in Third normal form it should meet an additional criterion after following
2NF i.e. any non-key attribute should not depend on any other non-key attribute. Again using the
same above example let’s see if there is any non-key field that depends on any other non-key field?
Indeed there is, Field Room and Capacity, Capacity is directly dependent on field room. We solve
this problem just like we solved the problem of 2NF, by making a new table for the two dependent
fields.

This set of rules makes sure that there is minimal redundancy of data while storing. It is a good
practice to follow at least 3NF while storing data. There are other sets of rules like 4NF, 5NF, 6NF,
BCNF and DKNF but these normal forms are beyond the scope of this book.

Keeping all the above points in mind, the final data model can be:

Fig. 10i - Data model 1
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Data insertion through R in SQLite

Relational databases which can be used with R:

SQLite: http://www.sqlite.org/download.html²⁰ Package for R: RSQlite

MySQL: http://dev.mysql.com/downloads/mysql/ Package for R: RMySQL MySQL workbench:
http://dev.mysql.com/downloads/workbench/

PostgreSQL: http://www.postgresql.org/download/ Package for R : RPostgreSQL

Oracle: http://www.oracle.com/technetwork/indexes/downloads/index.html Package for R: ROra-
cle

This chapter limits its examples to the SQLite database, however the other relational database
packages are similar to SQLite’s functional interface.

Your first step is to download and install the SQLite database. Next install the RSQLite package in
R.

1 install.packages("RSQLite")

After SQLite is installed, you will want to ensure an R session can establish connectivity to a SQLite
database. Use the dbConnect() function from the RSQLite package to establish connectivity. The
dbConnect accepts two arguments: the first is the type of database, and the second is the name of
the database.

1 library("RSQLite")

2 db<-dbConnect(SQLite(),dbname="test.sqlite")

3 summary(db)

4

5 <SQLiteConnection>

6 SQLite version: 3.8.6

7 Database name:

8 Loadable extensions:

9 File open flags:

10 VFS:

²⁰http://www.sqlite.org/download.html

http://www.sqlite.org/download.html
http://www.sqlite.org/download.html
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If SQLite is installed correctly you should get a summary like above.

Line 2 above, stores the established connection in the R db variable. The connectivity variable is
used every time you access the SQLite server. The types of operations you can perform are: create,
read, update and delete. These are known as the CRUD operations.

We will use the example from Chapter 10 and use the same books dataset to create three tables as
shown in data model 1 of Fig. 10i. Here is the link²¹ of the data again.

Creating tables

We can proceed with the code with two different structures.

First - Create tables(define primary and foreign keys), Manipulate data in R(Segregate data into
different variables according to the tables), Insert the data using either INSERT SQL statements (not
suitable for big datasets) or Insert data using dbWriteTable function.

Second - Manipulate data in R, Insert data using dbWriteTable which creates a new table according
to the value passed in the argument. There is no foreign key constraint in this case thus data
manipulation needs to be done with extreme caution. We will see the meaning of foreign key
constraint in the coming section.

1 > dbSendQuery(conn=db, "CREATE TABLE Authors

2 + (AuthorID INTEGER PRIMARY KEY,

3 + AuthorName TEXT,

4 + AuthorDetails TEXT)")

5 <SQLiteResult>

6

7 > dbSendQuery(conn=db, "CREATE TABLE Books

8 + (BooksID INTEGER PRIMARY KEY,

9 + BooksName TEXT,

10 + BooksGenre TEXT,

11 + AuthorID INTEGER,

12 + FOREIGN KEY (AuthorID) REFERENCES Authors(AuthorID))")

13 <SQLiteResult>

14

15 > dbSendQuery(conn=db, "CREATE TABLE Students

16 + (StudentID INTEGER PRIMARY KEY,

17 + StudentName TEXT,

18 + StudentEmail TEXT,

19 + BooksID Integer,

20 + FOREIGN KEY (BooksID) REFERENCES Books(BooksID))")

21 <SQLiteResult>

²¹https://drive.google.com/file/d/0B9uiGI8JEJw5X1U5dzNOdEhPcXc/view

https://drive.google.com/file/d/0B9uiGI8JEJw5X1U5dzNOdEhPcXc/view
https://drive.google.com/file/d/0B9uiGI8JEJw5X1U5dzNOdEhPcXc/view
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##### Inserting data using INSERT statements

The dbListTables() function returns the list of tables in the database. The dbSendQuery function
sends a query to SQLite from R. The first argument is the connection variable, the second argument
is the query. The query specifies the operation youwish to perform as well as the criteria for selecting
the data for the operation. A simple INSERT query consists of the INSERT keyword followed by
the name of the table <tablename> and the values to be stored in the table. The values as well as
the data types for the values that are being inserted should match the fields in <tablename>. For
example, if the Student table was created with a column name StudentEmail with format TEXT
then StudenEmail column can only accommodate TEXT not INTEGERS.

1 > dbListTables(db)

2 [1] "Authors" "Books" "Students"

3 > dbSendQuery(conn = db, "pragma foreign_keys=on;")

4 <SQLiteResult>

5

6 > dbSendQuery(conn = db,

7 + "INSERT INTO Authors

8 + VALUES (1, 'Khaled Hosseini', 'Afghan-born American novelist and physician')\

9 ")

10 <SQLiteResult>

11

12 > dbSendQuery(conn = db,

13 + "INSERT INTO Authors

14 + VALUES (2, 'Abraham Silberschatz', 'Yale University')")

15 <SQLiteResult>

16

17 > dbSendQuery(conn = db,

18 + "INSERT INTO Books

19 + VALUES (101, 'And the mountains echoed', 'Historical fiction',1)")

20 <SQLiteResult>

21

22 > dbSendQuery(conn = db,

23 + "INSERT INTO Students

24 + VALUES (1, 'Michelle ', 'meecheli@gmail.com',101)")

25 <SQLiteResult>

In the above code pragma foreign_keys = on is a flag to tell SQLite to turn on the foreign key
constraint i.e. you cannot inserta data record with a foreign key that does not exist in the referenced
table. This constraint is known as referential integrity.
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1 > dbSendQuery(conn = db,

2 + "INSERT INTO Students

3 + VALUES (2, 'Michelle ', 'meecheli@gmail.com',102)")

4

5 Error in sqliteSendQuery(conn, statement) :

6 rsqlite_query_send: could not execute1: FOREIGN KEY constraint failed

The statement above generates an error since there is no BooksId=102 within the database. This
means the INSERT statement failed due to the foreign key constraint. Similarly we cannot insert
a record without a unique primary key. If the primary key already exists wihin the relation, the
INSERT command fails.

1 > dbSendQuery(conn = db,

2 + "INSERT INTO Students

3 + VALUES (1, 'Michelle ', 'meecheli@gmail.com',101)")

4

5 Error in sqliteSendQuery(conn, statement) :

6 rsqlite_query_send: could not execute1:

7 UNIQUE constraint failed: Students.StudentID

Fetching data

We can fetch data using dbReadTable to read the entire table, We can also fetch customized data by
querying using the dbFetch function.

1 > dbReadTable(db,"Authors")

2

3 AuthorID AuthorName AuthorDetails

4 1 1 Khaled Hosseini Afghan-born American novelist and physician

5 2 2 Abraham Silberschatz Yale University

6

7 > dbListFields(db,"Authors")

8 [1] "AuthorID" "AuthorName" "AuthorDetails"

9

10 #Querying using dbFetch function.

11 > data<- dbSendQuery(conn = db, "SELECT AuthorName from Authors;")

12 > dbFetch(data)

13 AuthorName

14 1 Khaled Hosseini

15 2 Abraham Silberschatz

Inserting an entire CSV file
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1 > database<-dbConnect(SQLite(),dbname="newTest.sqlite")

2 > dbWriteTable(conn = database, name = "BooksData", value = "bookData.csv",

3 + row.names = FALSE, header = TRUE)

4 [1] TRUE

5

6 > dbListFields(database,"BooksData")

7 [1] "StudentID" "StudentName" "StudentEmail" "BookName"

8 "BookGenre" "AuthorName" "AuthorDetails"

In the above code, we inserted raw data, with a lot of redundancy i.e. data is not in 3NF. We can
manipulate the data in R to create different CSV or data frames following the data model of Fig. 10i.

1 > db<-dbConnect(SQLite(),dbname="booksData.sqlite")

2 > df<-read.csv("bookData.csv", header=TRUE)

3

4 # Use the unique function to remove redundancy

5 > authors<-unique(cbind.data.frame(as.character(df$AuthorName),

6 as.character(df$AuthorDetails)))

7 > colnames(authors)<- c("Author Name", "Author Details")

8

9 #Create a new row of Primary keys i.e. AuthorID column

10 > authors$AuthorID<-sample(1:20,nrow(authors))

11

12 # Authors table is ready for insert

13 > dbWriteTable(conn = db, name = "Authors", value = authors,

14 + row.names = FALSE) #Writing Authors table

15 [1] TRUE

16

17 # merge statement to merge the newly created AuthorID with the original dataset

18 > merged.data<- merge(df,authors,by.x=c("AuthorName","AuthorDetails"),

19 + by.y=c("Author Name","Author Details"))

20 # Take a look at the merged data. Above line just added AuthorID fields

21 # to the original data

22

23 # Use the unique function to remove redundancy

24 > books<- unique(cbind.data.frame(as.character(df$BookName),

25 as.character(df$BookGenre)))

26 > colnames(books)<- c("Book Name", "Book Genre")

27

28 #Create a new row of Primary keys i.e. booksID column

29 > books$bookID<-sample(100:130,nrow(books))

30
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31 # Again merging the created unique ID to the original dataset

32 # to make sure no data is lost

33 > finalmerge<- merge(merged.data,books, by.x=c("BookName","BookGenre"),

34 by.y=c("Book Name","Book Genre"))

35 # Again take a look at the finalmerge vector now it has both

36 # bookID and AuthorID

37

38 # capturing Books data from merged dataframe

39 # above with both authorID and booksID

40 > booksData<-unique(cbind.data.frame(finalmerge$bookID,finalmerge$BookName,

41 finalmerge$BookGenre,finalmerge$AuthorID))

42 > colnames(booksData)<- c("BookID","Book Name", "Book Genre", "AuthorID")

43 # We did this step to extract uinque rows of book with AuthorID

44 # so both primary key and foreign key is intact

45

46 # Books table is now ready for insert

47 > dbWriteTable(conn = db, name = "Books", value = booksData,

48 + row.names = FALSE) #Writing Books Table

49 [1] TRUE

50

51 # As student table is the last table to insert we can just generate

52 # unique rows for this table with primary and foreign keys

53 > studentsData<-unique(cbind.data.frame(finalmerge$StudentID,

54 finalmerge$StudentName,finalmerge$StudentEmail,finalmerge$bookID))

55

56 > colnames(studentsData)<- c("StudentID", "Student Name","Student Email"

57 , "BookID")

58

59 # Student table is now ready for insert

60 > dbWriteTable(conn = db, name = "Students", value = studentsData,

61 + row.names = FALSE) #Writing Students table

62 [1] TRUE
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1 # AuthorID column looks a bit messy due to the space constraint.

2 > head(dbReadTable(db,"Authors"))

3 Author.Name Author.Details A\

4 uthorID

5 1 Khaled Hosseini Afghan-born American novelist and physician \

6 10

7 2 David Mitchell English novelist \

8 19

9 3 William gibson American-Canadian speculative fiction novelist and essayist \

10 1

11 4 Markus Zusak _Australian writer \

12 14

13 5 Ken follett Welsh author of thrillers and historical novels \

14 4

15 6 Leo Tolstoy Russian novelist regarded as one of the greatest of all time \

16 3

17

18 #double check the merge by comparing the data

19 #I can just see "A thousand splendid suns" and "And the mountains echoed"

20 #belongs to author Khaled Hosseini with author ID 10.

21 > head(dbReadTable(db,"Books"))

22 BookID Book.Name Book.Genre AuthorID

23 1 103 A Short History of Nearly Everything Non-fiction 12

24 2 111 A thousand splendid suns Novel 10

25 3 128 A walk in the woods Non-fiction 12

26 4 108 All quiet on the western front War novel 2

27 5 106 And the mountains echoed Historical fiction 10

28 6 100 Best war ever Non-fiction 15

29

30 > head(dbReadTable(db,"Students"))

31 StudentID Student.Name Student.Email BookID

32 1 19 Debra ccastillou@ustream.tv 103

33 2 4 Emma emmij@gmail.com 111

34 3 38 Rose kgordon17@g.co 128

35 4 26 Albert mpalmerv@epa.gov 128

36 5 15 Albert mharrism@cpanel.net 108

37 6 36 Phillip dpalmer15@sogou.com 108

Querying data

Joins can be used to fetch data fields from multiple tables. For example, if we want to recreate the
.csv file from the tables, we would JOIN data from the Students, Books nd Authors tables. When we
create a JOIN statement we specify the fields that represent the relationships between the entities in
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the ON clause of the JOIN statement. In our database, the foreign BookID field stored in the Students
table is restricted to be equal to the BookID in the Books table. The same is true for AuthorID, we
limit the foreign key found in the Books table to the corresponding AuthorID in the Authors table.

1 > query1<- dbSendQuery(db, "Select [Student Name], [Book Name],

2 + [Author Name] from Students

3 + INNER JOIN Books ON Students.BookID = Books.BookID

4 + INNER JOIN Authors ON Books.AuthorID = Authors.AuthorID")

5 > dbFetch(query1,5)

6 Student Name Book Name Author Name

7 1 Debra A Short History of Nearly Everything Bill Bryson

8 2 Emma A thousand splendid suns Khaled Hosseini

9 3 Rose A walk in the woods Bill Bryson

10 4 Albert A walk in the woods Bill Bryson

11 5 Albert All quiet on the western front Erich Maria Remarque

NOTE- When there are spaces within the names of tables or fields, the names should be
enclosed within square brackets.

A WHERE clause can be used to create a filter on the returning records. It allows the programmer
to specify the specific records from the database it would like to manipulate within the R session. It
is always preferable to limit the data sent between the R session (the client) and the database server
since it will minimize the amount of data transferred between the two systems; thus leading to a
shorter transfer time.

1 > query2<- dbSendQuery(db, "Select [Student Name], [Student Email],

2 + [Book Genre], [Author Name] from Students

3 + INNER JOIN Books ON Students.BookID = Books.BookID

4 + INNER JOIN Authors ON Books.AuthorID = Authors.AuthorID

5 + WHERE [Student Name]='Michelle'")

6 > dbFetch(query2)

7 Student Name Student Email Book Genre Author Name

8 1 Michelle meecheli@gmail.com Historical fiction Khaled Hosseini

9 2 Michelle rcollins1j@wunderground.com Non-fiction Naomi Klein

The COUNT function counts the number of instances for a field or table.
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1 > query3<- dbSendQuery(db, "Select [Author Name], COUNT(*) from Students

2 + INNER JOIN Books ON Students.BookID = Books.BookID

3 + INNER JOIN Authors ON Books.AuthorID = Authors.AuthorID

4 + WHERE [Author Name]='Bill Bryson'")

5 > dbFetch(query3)

6 Author Name COUNT(*)

7 1 Bill Bryson 6

Exercise- Let’s try to comprehend the trade-off between space and time with relational databases.
In this chapter, we have dealt with a small database. Can you increase this dataset say 15 times and
then use the system.time() function as we did in chapter 5 or create a result set from the dataset.
Then compare the creation of the same result set from a relational database following 3NF.

The main point of the above exercise is to comprehend the basic trade-off in computer science. We
deal with this trade-off on a daily basis where we have to compromise either on the storage space or
the time to fetch/retrieve data. With the normal data set, we can retrieve any data of interest very
quickly using some sorting operation but it takes a lot of storage space. On the other hand storage
of 3NF relational database would require less memory space but executing a complex join could
take a long time. So we trade-off between the storage space and the time needed to fetch the data
according to the project requirements.
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Retrieving relational data

We have a working relational database and we saw a glimpse of fetching the data from relational
databases. In this chapter, we will explore the data retrieval in depth using basic SQL statements
through R.

Select statements

Select statements are used to fetch the data and the syntax for select statement is just like reading
an English sentence without proper grammar i.e. “SELECT <ColumnName> from <TableName>”.
Different columns can be retrieved at once using comma as a separator.

1 db<-dbConnect(SQLite(),dbname="booksData.sqlite")

2 dbGetQuery(db, " SELECT [Student Name], [Student Email] from Students")

Line 2 returns the entire Student table. The returned result set can now be processed by an R program.
Can we mix the SQL code with R code to limit the number of entries displayed? Yes, we can and
that is the advantage of using R. R gives us the freedom to manipulate data after retrieval from the
database.

1 > head(dbGetQuery(db, " SELECT [Student Name],

2 [Student Email] from Students"),10)

3 Student Name Student Email

4 1 Debra ccastillou@ustream.tv

5 2 Emma emmij@gmail.com

6 3 Rose kgordon17@g.co

7 4 Albert mpalmerv@epa.gov

8 5 Albert mharrism@cpanel.net

9 6 Phillip dpalmer15@sogou.com

10 7 Michelle meecheli@gmail.com

11 8 Adam jwashingtonr@bbc.co.uk

12 9 Scott rmedinaf@clickbank.net

13 10 Stephanie wfloress@alexa.com

Although we can limit the output in SQL as well.
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1 > dbGetQuery(db, " SELECT StudentID, [Student Name]

2 from Students LIMIT 10")

3 StudentID Student Name

4 1 19 Debra

5 2 4 Emma

6 3 38 Rose

7 4 26 Albert

8 5 15 Albert

9 6 36 Phillip

10 7 1 Michelle

11 8 22 Adam

12 9 8 Scott

13 10 23 Stephanie

NOTE- SQL is not case-sensitive, but it’s a good practice to capitalize the keywords of
SQL, this helps distinguish the column names and table names from keywords.

Aliases

Typically, it is not best practice to use spaces within column names. However as specified before it
can be done by surrounding the column name by square brackets [].

Aliases can be provided for any variable within a result set. It is a mechanism for customizing the
result set.

1 > dbGetQuery(db, " SELECT StudentID AS [Student ID],

2 [Student Name] AS StudentName from Students LIMIT 10")

3

4 Student ID StudentName

5 1 19 Debra

6 2 4 Emma

7 3 38 Rose

8 4 26 Albert

9 5 15 Albert

10 6 36 Phillip

11 7 1 Michelle

12 8 22 Adam

13 9 8 Scott

14 10 23 Stephanie

WHERE Clause

The WHERE clause can be used to filter the queried result with a specific condition. The syntax in
this case is just an extension of select statement i.e. “ SELECT <columnName> from <tableName>
WHERE <condition>”.
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1 > dbGetQuery(db, " SELECT StudentID,[Student Name],

2 [Student Email] from Students WHERE [Student Name]='Michelle'")

3

4 StudentID Student Name Student Email

5 1 1 Michelle meecheli@gmail.com

6 2 45 Michelle rcollins1j@wunderground.com

GROUP BY clause

The GROUP BY clause is used to group records that have the same value together. Each value found
within the column creates a separate group and each aggregated function is performed on each
group.

Syntax:” SELECT <columnName>,aggregate_functions(<columnName>) from <tableName>GROUP
BY <columnName>”

1 > dbGetQuery(db, "SELECT [Book Genre],

2 Count(*) AS [Number of Books] from Books GROUP BY [Book Genre] ")

3

4 Book Genre Number of Books

5 1 Adventure 1

6 2 Database 1

7 3 Drama 1

8 4 Fiction 2

9 5 Historical fiction 3

10 6 History 1

11 7 Humour 1

12 8 Non-fiction 9

13 9 Novel 1

14 10 Romance Novel 1

15 11 Science fiction 3

16 12 Travel literature 1

17 13 War novel 1

18 14 Young-adult fiction 1

19 15 psychology 1

Aggregate functions like SUM, COUNT, MAX, MIN, FIRST, LAST can be used on any column and
using the alias with the same gives a better presentation.

ORDER BY clause

The ORDER BY clause is used to arrange the queried result in ascending or descending order based
on a certain column. The ORDER BY function is just a method to sort data. The syntax includes
specifying the selected columns and then specifying the “order by” on which column and ascending
or descending. ASC and DESC are the keywords for ascending and descending.
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1 > dbGetQuery(db, "SELECT [Book Genre],

2 Count(*) AS [Number of Books] from Books

3 GROUP BY [Book Genre]

4 ORDER BY [Book Genre] DESC")

5

6 Book Genre Number of Books

7 1 psychology 1

8 2 Young-adult fiction 1

9 3 War novel 1

10 4 Travel literature 1

11 5 Science fiction 3

12 6 Romance Novel 1

13 7 Novel 1

14 8 Non-fiction 9

15 9 Humour 1

16 10 History 1

17 11 Historical fiction 3

18 12 Fiction 2

19 13 Drama 1

20 14 Database 1

21 15 Adventure 1

HAVING clause

The HAVING clause specifies a filtering criteria for the GROUP BY results. It provides the same
functionality as the WHERE clause except on the aggregated results. The syntax for the HAVING
clause is similar to the syntax for the WHERE with the exception that the HAVING clause can
specify aggregated functions in the conditional clause.

1 > dbGetQuery(db, "SELECT [Book Genre],

2 Count(*) AS [Number of Books] from Books

3 GROUP BY [Book Genre]

4 HAVING Count(*) >5")

5

6 Book Genre Number of Books

7 1 Non-fiction 9

JOINS

Joins are the most commonly used function when it comes to retrieving data from a relational
database. A JOIN statement connects data from different tables and fetch the data across tables.
There are four types of Joins:
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1. INNER JOIN
2. LEFT OUTER JOIN
3. RIGHT OUTER JOIN
4. FULL OUTER JOIN OR CROSS JOIN

INNER JOIN

Inner join returns only the instances which occur at least once in both the tables. A specific type of
an INNER JOIN is called a NATURAL JOIN. A NATURAL JOIN completes an INNER JOIN between
two tables on the fields that have the same name.

Fig. 12a - Inner Join representation

1 > dbGetQuery(db, "Select [Book Name],[Author Name],

2 COUNT(*) AS [Issued By] from Students

3 + INNER JOIN Books ON Students.BookID = Books.BookID

4 + INNER JOIN Authors ON Books.AuthorID = Authors.AuthorID

5 + GROUP BY [Book Name]")

6

7 Book Name Author Name Issued By

8 1 A Short History of Nearly Everything Bill Bryson 1

9 2 A thousand splendid suns Khaled Hosseini 1

10 3 A walk in the woods Bill Bryson 2

11 4 All quiet on the western front Erich Maria Remarque 2

12 5 And the mountains echoed Khaled Hosseini 3

13 6 Best war ever John Stauber 3

14 7 Blink Malcolm Gladwell 2

15 8 Cloud atlas David Mitchell 2
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16 9 Database System Concepts Abraham Silberschatz 1

17 10 Down under Bill Bryson 1

18 11 Going clear Lawrence Wright 2

19 12 Kite runner Khaled Hosseini 2

20 13 Neuromancer William gibson 2

21 14 No logo Naomi Klein 1

22 15 Outlander Diana Gabaldon 3

23 16 Outliers Malcolm Gladwell 2

24 17 Shadow Divers Robert Kurson 1

25 18 The bone clocks David Mitchell 1

26 19 The book thief Markus Zusak 1

27 20 The elegant universe Brian Greene 2

28 21 The lost continent Bill Bryson 2

29 22 The peripheral William gibson 3

30 23 The pillars of earth Ken follett 1

31 24 The prize Daniel Yergin 2

32 25 This changes everything Naomi Klein 1

33 26 Voyager Diana Gabaldon 2

34 27 War and Peace Leo Tolstoy 2

35 28 pirate hunters Robert Kurson 2

LEFT OUTER JOIN

Left join returns all the instance from the left table and the matched rows from the right table.

Fig. 12b - LEFT OUTER JOIN representation



Chapter 12 152

1 > db1<-dbConnect(SQLite(),dbname="orders.sqlite")

2

3 > dbSendQuery(conn=db1, "CREATE TABLE customers

4 + (customerID INTEGER PRIMARY KEY,

5 + customerName TEXT,

6 + Address TEXT)")

7 <SQLiteResult>

8

9 > dbSendQuery(conn=db1, "CREATE TABLE orders

10 + (orderID INTEGER PRIMARY KEY,

11 + customerID INTEGER,

12 + orderDetails TEXT,

13 + price TEXT,

14 + FOREIGN KEY (customerID) REFERENCES customers(customerID))")

15 <SQLiteResult>

16

17 > dbSendQuery(conn = db1,

18 + "INSERT INTO customers

19 + VALUES (1, 'Latika', 'Boston')")

20 <SQLiteResult>

21

22 > dbSendQuery(conn = db1,

23 + "INSERT INTO customers

24 + VALUES (2, 'John', 'California')")

25 <SQLiteResult>

26

27 > dbSendQuery(conn = db1,

28 + "INSERT INTO customers

29 + VALUES (3, 'Elton', 'New York')")

30 <SQLiteResult>

31

32 > dbSendQuery(conn = db1,

33 + "INSERT INTO orders

34 + VALUES (101,1, 'Nexus 6', '$550')")

35 <SQLiteResult>

36

37 > dbSendQuery(conn = db1,

38 + "INSERT INTO orders

39 + VALUES (102,1, 'Nexus 6 smart cover', '$15')")

40 <SQLiteResult>

41

42 > dbGetQuery(db1, "Select customerName, orderDetails, price from customers
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43 + LEFT JOIN orders ON customers.customerID = orders.customerID")

44

45 customerName orderDetails price

46 1 Latika Nexus 6 $550

47 2 Latika Nexus 6 smart cover $15

48 3 John <NA> <NA>

49 4 Elton <NA> <NA>

50

51 > dbGetQuery(db1, "Select customerName, orderDetails, price from customers

52 + INNER JOIN orders ON customers.customerID = orders.customerID")

53 customerName orderDetails price

54 1 Latika Nexus 6 $550

55 2 Latika Nexus 6 smart cover $15

Note - Both Right joins and outer joins are not implemented within many databases
including SQLite. The example codes for these two will not be executable.

RIGHT OUTER JOIN

Just the opposite of the LEFT OUTER JOIN, the RIGHT OUTER JOIN returns all the instances of
the right table as well as the matching rows from the left table.

Fig. 12c - RIGHT OUTER JOIN representation

1 dbGetQuery(db1, "Select orderDetails, price, customerName, Address from orders

2 RIGHT JOIN customers ON orders.customerID = customers.customerID")
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CROSS JOIN OR THE FULL OUTER JOIN

The FULL OUTER JOIN returns all the instances and the variables from both tables; if Table A has
M records and table B has N records then the result set contains M*N records. It is analagous with
the CROSS PRODUCT of the two tables.

Fig. 12d - CROSS JOIN OR THE FULL OUTER JOIN representation

1 dbSendQuery(conn = db1,

2 "INSERT INTO orders

3 VALUES (103,4, 'iphone cover', '$25')")

4 dbSendQuery(conn = db1,

5 "INSERT INTO orders

6 VALUES (104,5, 'samsung galaxy edge', '$750')")

7 dbGetQuery(db1, "Select customerName, orderDetails, price from customers

8 OUTER JOIN orders ON customers.customerID = orders.customerID")
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Non-relational databases

Introduction

Relational Database Management System (RDBMS) is by far the most common data storage
mechanism. In fact prior to 2004 almost all the data was stored in warehouses based on RDBMS.
The real downside of RDBMS came into the picture when databases grew to be in the petabytes.

The following is a list of common RDMS problems:

1. SQL is by far the most common method of fetching data from RDBMS. When the database
size reaches sizes in the terabyte and petabyte range, then the SQL queries can take a very
long time to execute.

2. Before storing the data, we need to have a complete picture about the structure and
organization of data so that it is easy to retrieve data later on.

3. Infrastructure requirements to handle petabytes of data with RDBMS become enormous with
the need for specialized servers to prevent loss of information.

The above challenges were too much of an investment with little return in functionality and smooth
operational processes. This lead to an evaluation of the functionality provided by a RDMS and the
needed functionality for storing and retrieving large databases in an efficient manner. This led to
the No SQL revolution or the Non-relational databases. Google was the first one to come up with
their database called “Big Table” in 2004. The research paper of this project became the foundation
of Non-relational databases and in 2008 Yahoo announced the implementation of Hadoop.

Non-relational databases are also known as NoSQL databases, the NoSQL stands for NOT ONLY
SQL. It is referring to the myriad of data models supported by these databases. In a relational
database you are limited to representing your data objects as a two dimensional table. The Not
Only SQL databases allow you to use other data models such as: key value pair, document style
model, network based model, graph model, hierarchical model etc.

Other common features of NoSQL databases:

1. Cost effective: NoSQL databases don’t require specialized servers to maintain data, in fact,
usage is as inexepensive as 10% - 20% of the specialized RDBMS servers.
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2. No structure needed: One of the most important features of NoSQL databases is the ability
to store unstructured data. Based on the flavor of NoSQL database used one can store almost
anything together. Any type of data like weblogs, social networking text files, satellite images,
graphs, biological data like 3d analysis of molecules or any other kind of data can be stored
in the same data file.

3. Massively parallel processing: NoSQL databases use the concept of massively parallel
processing to improve the execution time of data access. The NoSQL databases use many
off the shelf simple processors working in parallel to accomplish a specific data access. The
data and operations are spread across multiple nodes; and the work to complete the data access
operation is done in parallel.

4. Object-oriented programming: Object-oriented programming makes it simple and flexible
to code with NoSQL databases.

5. Tolerance to disk failure:NoSQL databases were designed to handle petabytes of data. There
are specific algorithms that can keep the database system available even when a disk failure
occurs. The data is divided into chunks and are duplicated on other disks. The systemmanages
the duplicated copies of the data; and will use a different replicated copy of the data from a
different node, if it is more optimal to do so or if that node is not available..

6. Simpler database management: A database manager for a SQL database is a highly trained
engineer who understands the optimizations provided by a RDMS and can utilize these
optimizations for a database. NoSQL databases have automated many of the tasks associated
with a database administer (DBA). The goal is to simplify or potentially eliminate a DBA for
NoSQL databases.
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Fig. 13a - Massive parallel processing

Types of NoSQL databases

NoSQL databases support many different data models. Below is a list of some models supported by
NoSQL.

1. Key-value databases eg riak, project Voldemort
2. Document oriented databases eg MongoDB, CouchDB
3. Columnar databases eg Cassandra
4. Graph database eg Neo4J

Key-value databases

Key-value paired databases are the simplest model supported by the NoSQL databases. They
associate a data value with a specific key value. The key value must be known for retrieval of the
data value. Key-value pair databases are similar to a hash table where access to a hash entry is via
the hash key. The key can be synthetic or auto-generated and the values associated with the key can
be a simple integer, a string, JSON object, or a BLOB (binary large object).

When an element is being inserted into a key-value pair database, the only restriction on the element
is that the key does not exist within the collection of entities found in the database. There is no
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restriction of the value of the element, such as size or type restriction. Now the question is what is
the meaning of collection of entities here? To understand this let us assume that we have a database
of customers placing different orders for different products say data from Amazon. Now we know
the schema for this database if we store the data in a relational database, this will require to normalize
the data to reduce redundancy. However, when we store the same data in a key-value database, we
make a collection of each real world entity.

Fig. 13b - Key-value databases

Document oriented databases

Document oriented databases also have the concept of a key to access a particular object. However,
the data portion of the object can have a structure. The structure of the object is embedded within
the object itself. There is no separate data dictionary as found within a SQL database. In order to
understand the structure of an object you retrieve and read the object. The representation of the
data on disk typically will use a language such as XML, JSON or BSON (binary JSON) since these
languages provide the self-referencing aspect needed by these databases. These languages allow
the actual structure of each object stored in a collection of objects to have a different collection of
variables stored within it. This is known as a schema-less database. This provides great flexibility
when storing data and designing a database. It also allows the database to evolve over time.

When we are retrieving data, we provide an implicit schema i.e. fetching a particular price of a
particular order we are assuming that order has a price field.
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Fig. 13c - document databases

Wewill see the usage of MongoDB a document oriented database in detail and explore how to store,
manipulate and fetch data in MongoDB.

Columnar databases

As the name suggests, a columnar database stores data in columns as oppose to rows. This storage
mechanism is useful when most queries access a small subset of the columns in a row. Columns are
grouped into families. Typically a column family corresponds to a real world object.

Fig. 13d - Columnar databases

The Figure above shows a representation of a columnar database. This can be compared to a row-
oriented database configuration where the fields for an object are stored in the same file. Above data
would be stored in the following format in row oriented databases:
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{123:{{Name:Yatish},{EmailID:data},{Address:data}},{},{}….}

The same data is stored in columnar databases as:

123:{{Name,EmailID,Address:Yatish,data,data},{},{}….}

Compression is heavily applied in a columnar database since the data stored in each file contains
the values for only one field. These fields can be stored in canonical order (such as alphabetical
order for strings) and only the difference between the values need to be stored. This leads to fewer
bytes per entry. Compression of data can be done using a concept called tokenization. A column
may have many repeated values, we replace these repeated values with tokens, this concept of
tokenization works better in columnar database as compared to row-oriented database as we do
this compression block by block and in columnar database all column values which are bound to be
similar are grouped together and hence stored in one block.

Graph Database

Graphs consists of nodes and edges. Typically the node represent entities and the edges represent a
relationship between the nodes. A graph database can represent highly interconnected entities fairly
easily. Examples of highly interconnected data are data from a social networking site, web references
on the web, word usage within articles etc. Graph databases can also be used for applying inference
to the network.
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MongoDB is a NoSQL document oriented database. It can be used to store large semi-structured
data as an object. A database consists of 0 to many collections. A collection represents a collection
of similar real world projects. An object or a document consists of named fields and values. The
values of the fields may in turn consist of objects or a collection of objects.

MongoDB can be downloaded from the official site directly. MongoDB²²

Installation on mac

Step 1: Download the compressed file from the link above or use the terminal to download the file
to your current working directory using the following command:

1 curl -O https://fastdl.mongodb.org/osx/mongodb-osx-x86_64-3.0.5.tgz

Step 2: Unzip the file by either double clicking on the zipped file or using the following command
in terminal:

1 tar -zxvf mongodb-osx-x86_64-3.0.5.tgz

Step 3: Copy the extracted files to a new parent folder named mongodb to make it a target directory
using the following commands in terminal:

1 mkdir -p mongodb

2 cp -R -n mongodb-osx-x86_64-3.0.5/ mongodb

Note - Make sure you specify the path of the downloaded file if it is not in your current
working directory.

Step 4: Last step is to ensure that the location of mongodb path is exported in the PATH environment
variable so that we can directly run any command directly in the terminal without actually going
to the corresponding path.

²²https://www.mongodb.org/downloads

https://www.mongodb.org/downloads
https://www.mongodb.org/downloads
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1 export PATH=<mongodb-install-directory>/bin:$PATH

To find out the exact path of the current working directory we can use pwd command. Mymongodb-
install-directory looks like this:

1 export PATH=/Users/Yatish/mongodb/bin:$PATH

Note: Be careful that there should be no space in the command line after typing PATH=

The above command will export this mongodb path to PATH variable only for this session and once
you close the terminal and open it again you will have to run this command again to export the
path, a better way to avoid this process is to create a .bashrc file or edit the .bashrc file if you already
have one and export the PATH there and source the .bashrc file while opening terminal.

Here is howmy .bashrc file looks like, where I have exported the path of MySQL, Perl andMongoDB
installed and different places on my system.

Fig. 14a - .bashrc file

Installation on windows

Step 1: Determine which mongoDb build is required for your system by using the following
command in command prompt:

1 wmic os get caption

2 wmic os get osarchitecture

Download the mongodb 32 bit of 64 bit version accordingly.

Step 2: For an interactive installation, locate the .msi file in your Downloads folder and double click
on it to run it. It you do not wish to use the .msi file use the following commands in a command
prompt shell.
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1 msiexec.exe /q /i mongodb-win32-x86_64-2008plus-ssl-3.0.5-signed.msi ^

2 INSTALLLOCATION="C:\mongodb" ^

3 ADDLOCAL="all"

Note - Before running the above command make sure you are in the directory where
the above .msi file is located.

Running MongoDB on windows

Step 1: Make directory to setup mongodb environment:

1 md \data\db

2 md \data\log

Step 2: Start MongoDB server by running the following command:

1 C:\mongodb\bin\mongod.exe

Note- the above command assumes that you have downloaded and installed mongodb
in C:/mongodb

Step 3: Run a client that connects to the MongoDB server. This will start the MongoDB shell.

1 C:\mongodb\bin\mongo.exe

Step 4: Start using mongodb

Running MongoDB on mac

Step 1: Create a data directory using the following command:

1 mkdir -p /data/db

2 mkdir -p /data/log

Step 2: Set correct permissions for the above-created data directory using the following command:

1 sudo chown `id -u` /data/db

Step 3: Run mongodb server by using the following command in terminal:
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1 mongod

Once mongod, the MongoDB server, is started, it is ready to accept client connections. You can
terminate theMongod server by pressing CTRL+C simultaneously in thewindow running the server.

For our first MongoDB exercise, we will insert the geographic coordinates for U.S. farmers markets
for 2013 and write queries to retrieve subsets of the data. The farmer’s markets data can be accessed
from this link²³.

Before actually going further into the demonstration it is advisable to read the description of the file
given in the second row and look at the data in general.

NOTE - Before trying to establish a connection using R make sure that mongodb server
is started in the terminal and is ready to accept the connection. To start the server run
mongod in the terminal in mac and execute mongod.exe in window as administrator.

Reading XLSX file in R

1 library(openxlsx) #load package

2

3 data<-read.xlsx("2013 Geographric Coordinate Spreadsheet for U S Farmers

4 Markets 8'3'1013.xlsx", sheet=1, startRow=3)

5 str(data)

In the above command, we set startRow=3 since the market data starts on the third row. We wish
to not include the data labels and descriptions found in the first 2 rows.

Connecting to mongodb using R

There are mainly two packages of R used to connect to mongodb namely mongolite and rmongodb.
In this book, we demonstrate the functions, objects and object methods in mongolite.

1 install.packages("mongolite")

2 library("mongolite")

3

4 mongoData<- mongo("data") #establish connection using mongo command

The mongo() function in the mongolite package establishes a connection between the MongoDB
“data” collection and the R session. Once you run the above command you should see a message in
the terminal window stating connection accepted as shown in the figure below.

²³https://drive.google.com/file/d/0B9uiGI8JEJw5aWVtVWNzd1BSTk0/view

https://drive.google.com/file/d/0B9uiGI8JEJw5aWVtVWNzd1BSTk0/view
https://drive.google.com/file/d/0B9uiGI8JEJw5aWVtVWNzd1BSTk0/view
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Fig. 14b - mongodb connection accepted

Once the connection is established, we can insert data using the insert method of the mongo
connection. The method inserts objects into the connected “data” collection.

1 > mongoData$insert(data)

2 Complete! Processed total of 8144 rows.

3 [1] TRUE

The advantage of using mongolite is that you can directly insert an R dataframe into a Mongo
database. This is not true for rmongodb, since with rmongodb the data must be converted to a JSON
object before it can be stored to a Mongo database.

The above command will create a default binary file in the mongodb/data directory named test.0
with the data stored as a BSON object. It is essential to know how the data is stored as we will be
using the exact same format to fetch the data.

A JSON object is surrounded by curly braces. Each objects consists of field value pairs, where the
name of the field an the value of the field are separated by a colon (:).

Functionalities of mongolite

export()

The export() function exports the data to the named external file, as mentioned above, the data is
stored in the mongodb/data directory as a binary file. It is good practice to review the newly created
file for potential problems.

1 # Change the directory to your desktop.

2 # So that you can open this exported file easily.

3

4 > mongoData$export(file("data.txt"))

5 Done! Exported a total of 8144 lines.
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A JSON file encapsulates each object within curly braces {}. A special field is automatically created
for each inserted object. It is the key for the object the _id field; the system ensures it has a unique
value. All the column or field names are to the left of the colon and the value is to the right of the
colon. Different key value pairs are separated by comma.

Once you understand this structure you can easily use different functionalities of mongolite package.

count()

1 > mongoData$count()

2 [1] 8144

3

4 # count data with specific condition

5

6 # count data where value of Vegetables is Y

7 > mongoData$count('{"Vegetables":"Y"}')

8 [1] 4326

In the above count command, the first argument in curly braces is the column name and the second
argument after the colon is the value of that column.

find()

The find method allows you to query the connected data collection. It returns the documents that
satisfy the provided criterion.

1 > Cheese <- mongoData$find('{"Cheese":"Y"}')

2 Imported 2257 records. Simplifying into dataframe...

3

4 > eggsAndVegetables<-mongoData$find('{"Eggs":"Y","Vegetables":"Y"}')

5 Imported 3123 records. Simplifying into dataframe...

We can refine the find statement by combining many conditions in one statement. The conditions
are separated by commas.

sort()

The sort argument to the find method, orders the result set either in ascending or descending order.
It is analogous to the ORDER BY clause in SQL. It provides a JSON object that consists of the field
to sort by and a data value equal to -1 or 1. A data value of 1 specifies to sort the documents in
ascending order; a value of -1 specifies to sort the documents in descending order.
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1 Cheese <- mongoData$find('{"Cheese":"Y"}', sort='{"FMID":-1}')

2 head(Cheese)

Fetching specific columns

The find() method also accepts an argument that will limit the columns returned in the result set.
Like the sort argument, it accepts a JSON object, where you can specify the fields to be returned
in the result set. A data value of 0 means do not return the field, a data value of 1 means the field
should be returned in the result set. The default is to return a field unless the 0 value is specified.
This example shows the _id field created by MongoDB when a record is inserted into a collection.
MongoDB ensures a unique value for each document or object inserted into a collection. In this
example, it is displayed as a large hexadecimal number.

1 > dat <- mongoData$find('{"Cheese":"Y"}', fields = '{"FMID":1, "Cheese":1}')

2 Imported 2257 records. Simplifying into dataframe...

3 > head(dat)

4 _id FMID Cheese

5 1 55, d4, 9b, f4, ce, a0, 6b, 1b, 60, 3a, 06, 92 1005969 Y

6 2 55, d4, 9b, f4, ce, a0, 6b, 1b, 60, 3a, 06, 93 1008044 Y

7 3 55, d4, 9b, f4, ce, a0, 6b, 1b, 60, 3a, 06, 94 1000618 Y

8 4 55, d4, 9b, f4, ce, a0, 6b, 1b, 60, 3a, 06, 97 1008071 Y

9 5 55, d4, 9b, f4, ce, a0, 6b, 1b, 60, 3a, 06, 9c 1000709 Y

10 6 55, d4, 9b, f4, ce, a0, 6b, 1b, 60, 3a, 06, 9d 1003233 Y

Here is an example where we remove the _id field from the result set.

1 > dat <- mongoData$find('{"Cheese":"Y"}', fields = '{"_id":0,"FMID":1, "Cheese":\

2 1}')

3 Imported 2257 records. Simplifying into dataframe...

4 > head(dat)

5 FMID Cheese

6 1 1005969 Y

7 2 1008044 Y

8 3 1000618 Y

9 4 1008071 Y

10 5 1000709 Y

11 6 1003233 Y

distinct()

The distinct method can be used to select the unique values of a column. It is analogous to the
DISTINCT keyword in SQL.
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1 > cities<-mongoData$distinct("city")

2 > head(cities)

3 [1] "Virginia Beach" "Douglasville" "Kalamazoo" "New York" "Wilming\

4 ton" "Washington"

aggregate()

The aggregate method can be used to perform aggregated operations on the qualifying documents.
You can specify a field to group the documents by as well as the aggregation function(s). The
aggregation functions supported are: count, min, max, sum, average; these are the functions
supported by SQL. The aggregate method provides the GROUP BY and aggregation functionality
provided by SQL. This example also displays the aliasing functionality found within SQL. In our
example we are renaming the State field to _id and the aggregated sum to “count”.

1 > mongoData$aggregate('[{"$group":{"_id":"$State", "count": {"$sum":1}}}]')

2 Imported 55 records. Simplifying into dataframe...

3 _id count

4 1 Miinesota 1

5 2 Wyoming 41

6 3 Calafornia 5

7 4 Utah 40

8 5 California 754

More than one aggregate functions can be used together:

1 > mongoData$aggregate('[{"$group":{"_id":"$State", "count": {"$sum":1},"max":{"$\

2 max":"$zip"}}}]')

3 Imported 55 records. Simplifying into dataframe...

4 _id count max

5 1 Miinesota 1 <NA>

6 2 Wyoming 41 83127

7 3 Calafornia 5 94114

8 4 Utah 40 84775

9 5 California 754 96150

drop()

The drop method removes the connected collection from the current database.
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1 > mongoData$drop()

2 [1] TRUE

Limitation of using mongoDB with R

As stated in Chapter 2, there are limitations to the characters that can be within an R variable name.
One such limitation is an R variable does not allow a space. In order to easily convert mongoDB
field names to R variable names, R converts all spaces to periods. In the example below, the field
name “Update Time” is changed to “Update.Time”. However, the period is a special character for
JSON objects. It specifies that the field is not a simple field but a field that also contains subfields. To
avoid this problem make sure you clean your field names by removing periods and spaces BEFORE
storing the data to mongoDB.

1 > str(data[45])

2 'data.frame': 8144 obs. of 1 variable:

3 $ Update.Time: chr "41034.74790509259" "41108.577175925922" "41456.97906250000\

4 2" "40969.443310185183" ...

Here is an example when the programmer has not removed the spaces from the field names. The
data cannot be retrieved using the find method, since it assumes that Time is a subfield to the Update
field.

1 > mongoData$count('{"Update.Time":"41108.577175925922"}')

2 [1] 0

3 > mongoData$find('{"Update.Time":"41108.577175925922"}')

4 Imported 0 records. Simplifying into dataframe...

5 data frame with 0 columns and 0 rows

To deal with this limitation a simple solution is to follow camelCasing in the column names of your
data.

Stopping the MongoDB server

It is very important to note that once you start a mongoDb server it is using a particular port for the
MongoDB server to client communication. If you close the terminal without closing the MongoDb
session, then that port is not available to restart a MongoDb session. To stop the server, just press
the CTRL key while simultaneously pressing the C key <CTRL+C> in your terminal window. This
is not an issue on Windows operating systems since all system resources are deallocated when the
command prompt is terminated. However on a Mac system, ensure you stop the MongoDB server
with the<CTRL+C> keys or else the server will not be able to restart.

Figure 14.c displays the error when the MongoDB server is not properly terminated:
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Fig. 14c - mongod error

To solve this issue on a mac, we need to kill the process running on port 27017. We first need to
determine the process number to be able to kill it which can be done with the following command
in terminal:

1 ps wuax | grep mongo

This will show an output like this:

1 Yatish 13035 0.5 1.8 7141128 73920 ?? S 3:59PM 0:04.01 mongod

2 Yatish 13071 0.4 0.0 2433796 664 s000 S+ 4:09PM 0:00.01 grep mongo

Once we know the process number, we can simply run a kill command to kill that process and then
start the mongo server again by typing mongod.

1 kill 13035

Neo4J

Neo4j is a type of graph database used to store highly interconnected and dynamic data. Like
MongoDB and SQL databases, Neo4j provides mechanisms for querying the data, it has created
specialized queries for graph data such as a relatedness index.

Neo4j community edition can be downloaded from the official site directly. neo4j²⁴

Installation

Neo4J installation is very simple with only one prerequisite i.e. OpenJDK7²⁵

Once you have this Java version you can directly go inside the neo4j unzipped folder and within it
bin folder and type the following command to run the server:

²⁴http://neo4j.com/download/other-releases/
²⁵http://openjdk.java.net/

http://neo4j.com/download/other-releases/
http://openjdk.java.net/
http://neo4j.com/download/other-releases/
http://openjdk.java.net/


Chapter 14 171

1 cd Downloads/neo4j-community-2.2.4/bin

2

3 neo4j start

Fig. 14d - Neo4j connection accepted

As shown in the image, “http://localhost:7474/ is ready.” The URL address lists the hostname as
localhost and the port number as 7474. Copy and paste this URL into any browser to see the local
page for neo4j. The first time you access the home page, you can set a new password for the neo4j
server by clicking on the password link on the left pane. The default username is neo4j and the
default password is neo4j. After changing the password, keep a note of the username and password.
Now we can create nodes and relationships using the neo4j user interface; you can also create nodes
and edges using an R program. We will create an R program that creates a graph that represents
the organizational chart for company XYZ. Our nodes are employees and the edges are the different
relationships that can exist between nodes, such as the hierarchical relationship ‘works for’ or ‘part_-
of’, or the the binary relationships ‘friends with’ and ‘knows’ relationship, as displayed in Fig. 14d.
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Fig. 14e - Neo4j graph

Installing neo4j in R

1 install.packages("devtools")

2 install.packages("httr")

3 devtools::install_github("nicolewhite/RNeo4j")

4 library(RNeo4j)

Establishing connection

1 graph = startGraph("http://localhost:7474/db/data/",username="neo4j",password="y\

2 atish")

Creating Nodes

The first step of creating a graph is to create nodes. Nodes are created using the createNode function
of RNeo4j.

In the above graph, we have 10 nodes. We can give a specific attribute to all of these nodes which
will be stored as key-value arguments.The createNode function has the following syntax:

createNode(graph object, label, key1=value1, key2=value2)
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graph object is the object in which we have established a connection, the label is some label defined
for this node.Labels will be later used to fetch specific data.

1 ben <-createNode(graph, "Person", name="Ben", age=45, designation="Sr. Manager")

2 mel <-createNode(graph, "Person", name="Mel", age=38, designation="Team Leader")

3 kelly <-createNode(graph, "Person", name="Kelly", age=30,

4 designation="Programmer")

5 mike <- createNode(graph, "Person", name="Mike",age=27,

6 designation="Software Tester")

7 john <- createNode(graph, "Person", name="John", age=28,

8 designation="Android developer")

9 ella <- createNode(graph, "Person", name="Ella", age=28,

10 designation="Marketing")

11 dave <- createNode(graph, "Person", name="Dave", age=48,

12 designation="Zonal Head")

13 maggi <- createNode(graph, "Person",name="Maggi", age=28,

14 designation="Assistant")

15 laugh<- createNode(graph, "Club",name="XYZ laughter club",

16 motto="learn to laugh",members=50)

17 sports <- createNode(graph,"Sports",name="Cricket",host="ICC")

Creating relationships

Similar to the createNode() function, the createRel function is used to create a relationship between
two nodes. It takes 3 or more arguments, the optional arguments provide data elements for the
relationship.

createRel(node1,”Relationship label”,node2, key1=value1,key2=value2)

1 r1 <- createRel(mel,"WORKS_FOR",ben)

2 r2 <- createRel(kelly,"WORKS_FOR",ben)

3 r3 <- createRel(mike,"WORKS_FOR",ben)

4 r4 <- createRel(john,"WORKS_FOR",ben)

5 r5 <- createRel(ella,"WORKS_FOR",ben)

6 r6 <- createRel(ben,"WORKS_FOR",dave)

7 r7 <- createRel(maggi, "WORKS_FOR",dave)

8 r8 <- createRel(maggi, "FRIENDS_WITH",ella)

9 r9 <- createRel(ella, "FRIENDS_WITH",maggi)

10 r10 <- createRel(john, "FRIENDS_WITH",mike)

11 r11 <- createRel(mike, "FRIENDS_WITH",john)

12 r12 <- createRel(dave, "PART_OF",laugh)

13 r13 <- createRel(john,"PART_OF",laugh)

14 r14 <- createRel(mike,"PART_OF",laugh)
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15 r15 <- createRel(dave,"LIKES",sports)

16 r16 <- createRel(ben,"LIKES",sports)

17 r17 <- createRel(mike,"LIKES",sports)

18 r18 <- createRel(dave,"KNOWS",ella)

Just by creating nodes and relationships we are able to create the above graph. To get a visual
representation, open the localhost link and click on the three dots on the top left corner to expand
the menu bar. Then click the ‘*’ under the node labels.

Cypher

Neo4j has its own query language called cypher. The syntax of cypher is completely different from
SQL providing enough flexibility to determine relatedness and distant connections.

Let’s build a simple query to fetch the details of all the employees who works for somebody.

1 # Query to display all the employees who works for somebody

2 > query = "

3 + MATCH (m:Person)-[:WORKS_FOR]->(works_for:Person)

4 + RETURN m.name,m.age,m.designation,works_for.name

5 + "

6 > cypher(graph, query)

7 m.name m.age m.designation works_for.name

8 1 Maggi 28 Assistant Dave

9 2 Ben 45 Sr. Manager Dave

10 3 Mel 38 Team Leader Ben

11 4 Kelly 30 Programmer Ben

12 5 Mike 27 Software Tester Ben

13 6 John 28 Android developer Ben

14 7 Ella 28 Marketing Ben

The MATCH keyword specifies that a query can start at a type of node and follow a specific
relationship to another node. The syntax for the MATCH statement is:

Match (<this.node>)-[<with.this.relationship>]-> (<to.this.node>) and return details.

Nodes are enclosed within parenthesis () and relationships are enclosed within square brackets[].
The colon is used to create an alias for a node or a relationship. Once the aliases are defined, they
are used to retrieve any corresponding attributes for the aliased node or relationship.

In the above command, we are fetching data of who in “Person” node “works for”(relationship)
which “Person”.

Like the SQL SELECT statement, the MATCH command also accepts a WHERE clause. Below is an
example where we are limiting the returned data to people with a certain age.
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1 > query = "

2 + MATCH (m:Person)-[:WORKS_FOR]->(works_for:Person)

3 + WHERE m.age= 28

4 + RETURN m.name,m.age,m.designation,works_for.name

5 + "

6 > cypher(graph, query)

7 m.name m.age m.designation works_for.name

8 1 Maggi 28 Assistant Dave

9 2 John 28 Android developer Ben

10 3 Ella 28 Marketing Ben

Combining two match queries

You may want to limit your result set to nodes that participate in more than 1 relationship. You
can add additional arguments to the MATCH command to specify the additional relationships. In
the example below, we are matching people who are boss/subordinate, as well as friends and the
subordinate likes Sports.

1 > query = "

2 + MATCH (m:Person)-[:WORKS_FOR]->(w:Person),

3 + (m:Person)-[:FRIENDS_WITH]->(Person),

4 + (m:Person)-[:LIKES]->(Sports)

5 + RETURN m.name,m.age,m.designation,w.name

6 + "

7 > cypher(graph, query)

8 m.name m.age m.designation w.name

9 1 Mike 27 Software Tester Ben

Just like a SQL SELECT statement, a complex MATCH statement should be developed iteratively.
Develop one MATCH relationship clause one at a time. The example below displays one example
for developing the above complex MATCH statement.

1 > query = "

2 + MATCH (m:Person)-[:WORKS_FOR]->(w:Person),

3 + (m:Person)-[:FRIENDS_WITH]->(Person)

4 + RETURN m.name,m.age,m.designation,w.name

5 + "

6 > cypher(graph, query)

7 m.name m.age m.designation w.name

8 1 Maggi 28 Assistant Dave

9 2 Mike 27 Software Tester Ben

10 3 John 28 Android developer Ben

11 4 Ella 28 Marketing Ben



Chapter 14 176

The MATCH example above, returns 4 boss/subordinates who are friends. Once we are satisified
with this return set, we write another MATCH query that find people who like sports. The last step
is to combine all clauses and to verify the results of the intersecting result sets. Now we need to find
who likes sports in a separate query and then combine the two queries together.

1 > query = "

2 + MATCH (m:Person)-[:WORKS_FOR]->(w:Person),

3 + (m:Person)-[:LIKES]->(Sports)

4 + RETURN m.name,m.age,m.designation,w.name

5 + "

6 > cypher(graph, query)

7 m.name m.age m.designation w.name

8 1 Ben 45 Sr. Manager Dave

9 2 Mike 27 Software Tester Ben

If a particular query does not return a result set that means that there is no matching result for that
condition in your graph. For example:

1 > query = "

2 + MATCH (m:Person)-[:WORKS_FOR]->(w:Person),

3 + (m:Person)-[:FRIENDS_WITH]->(w:Person)

4 + RETURN m.name,m.age,m.designation,w.name

5 + "

6 > cypher(graph, query)

7 #returns nothing as there is nobody who is friends with either Dave or Ben (w:Pe\

8 rson here is an alias for Employers)

cyperToList

The cypherToList function converts the result of a query to a List. The collect function creates a set
for the matching values. Here we are creating a result set with all fields from Person node and a
collection field that contains all the employees that report to a person.
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1 > query = "

2 + MATCH (m:Person)-[:WORKS_FOR]->(w:Person)

3 + RETURN w, Collect(m.name) AS employees

4 + "

5 > cypherToList(graph, query)

6 [[1]]

7 [[1]]$w

8 < Node Object >

9 $name

10 [1] "Ben"

11

12 $age

13 [1] 45

14

15 $designation

16 [1] "Sr. Manager"

17

18

19 [[1]]$employees

20 [[1]]$employees[[1]]

21 [1] "Mel"

22

23 [[1]]$employees[[2]]

24 [1] "Kelly"

25

26 [[1]]$employees[[3]]

27 [1] "Mike"

28

29 [[1]]$employees[[4]]

30 [1] "John"

31

32 [[1]]$employees[[5]]

33 [1] "Ella"

34

35 [[2]]

36 [[2]]$w

37 < Node Object >

38 $name

39 [1] "Dave"

40

41 $age

42 [1] 48
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43

44 $designation

45 [1] "Zonal Head"

46

47

48 [[2]]$employees

49 [[2]]$employees[[1]]

50 [1] "Ben"

51

52 [[2]]$employees[[2]]

53 [1] "Maggi"

In the above example, we are capturing the two employers and collecting the name of people who
works for them under the alias called employees.

1 > emp<-cypherToList(graph, query)

2 > emp[[2]]$employees

3 [[1]]

4 [1] "Ben"

5

6 [[2]]

7 [1] "Maggi"

Parameterized queries

Typically when writing code, you will want to write code that accepts arguments. This way you
can use the same code when the values you want to match changes. This is known as parametrizing
code. We can parametrize the MATCH command by providing variables that contain the values we
want to match. Within the MATCH command all variables are surrounded by curly braces {}. This
signals that the variable needs to be evaluated to determine the value that should be included in the
MATCH statement. Below is an example of a parametrized query.

1 > query = "

2 + MATCH (m:Person)-[:WORKS_FOR]->(works_for:Person)

3 + WHERE m.age={age}

4 + RETURN m.name,m.age,m.designation,works_for.name

5 + "

6 > cypher(graph, query,age=28)

7 m.name m.age m.designation works_for.name

8 1 Maggi 28 Assistant Dave

9 2 John 28 Android developer Ben

10 3 Ella 28 Marketing Ben



Chapter 14 179

1 > query = "

2 + MATCH (m:Person)-[:WORKS_FOR]->(w:Person)

3 + Where w.name= {name}

4 + RETURN w, Collect(m.name) AS employees

5 + "

6 > cypherToList(graph, query,name="Dave")

7 [[1]]

8 [[1]]$w

9 < Node Object >

10 $name

11 [1] "Dave"

12

13 $age

14 [1] 48

15

16 $designation

17 [1] "Zonal Head"

18

19

20 [[1]]$employees

21 [[1]]$employees[[1]]

22 [1] "Ben"

23

24 [[1]]$employees[[2]]

25 [1] "Maggi"

Finding the shortest path

Within a graph, there may be multiple paths from one node to another node. We can use
the shortestPath function to calculate the shortest path from one node to another node. When
traversing the graph, we can specify the relationship to use as a edge connecting the nodes. In the
example below we limit paths from kelly to dave using only edges that represent the WORKS_FOR
relationship. This MATCH query will return the middle managers between the two people. In our
example kelly works for Ben and Ben works for Dave, hence the shortest path is 2.
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1 query = "

2 MATCH p = shortestPath((kelly:Person)-[:WORKS_FOR*]->(dave:Person))

3 WHERE kelly.name = 'Kelly' AND dave.name = 'Dave'

4 RETURN p

5 "

6

7 p = cypherToList(graph, query)[[1]]

8 p$p$length

Visualizing graphs in R

The library igraph can be used to display graphs. We need to specify the layout of the graph, we use
the betweeness and closeness measure to display the graph.

1 library(igraph)

2 > query="

3 + MATCH (n) -->(m)

4 + RETURN n.name,m.name

5 + "

6 > cypher(graph, query)

7 n.name m.name

8 1 Dave Cricket

9 2 Dave XYZ laughter club

10 3 Dave Ella

11 4 Maggi Dave

12 5 Maggi Ella

13 6 Ben Cricket

14 7 Ben Dave

15 8 Mel Ben

16 9 Kelly Ben

17 10 Mike Cricket

18 11 Mike Ben

19 12 Mike John

20 13 Mike XYZ laughter club

21 14 John Ben

22 15 John Mike

23 16 John XYZ laughter club

24 17 Ella Ben

25 18 Ella Maggi
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1 > edgelist = cypher(graph, query)

2 > ig = graph.data.frame(edgelist, directed=F)

3 > betweenness(ig)

4 Dave Maggi Ben Mel

5 7.1000000 0.0000000 20.0166667 0.0000000

6 Kelly Mike John Ella

7 0.0000000 2.1666667 1.0000000 2.9000000

8 Cricket XYZ laughter club

9 0.5333333 1.2833333

10 > closeness(ig)

11 Dave Maggi Ben Mel

12 0.07692308 0.05000000 0.09090909 0.05263158

13 Kelly Mike John Ella

14 0.05263158 0.06666667 0.06250000 0.06666667

15 Cricket XYZ laughter club

16 0.06666667 0.05882353
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Fig. 14f - Plotting via R

Another package called network provides a different visualization for the graphs. Other packages to
review are “sna” , “GGally” and “intergraph”.

1 install.packages("intergraph")

2 install.packages("sna")

3 install.packages("network")

4 install.packages("GGally")

5 library(network)

6 library(GGally)

7

8 net = network(edgelist)

9 ggnet(net, label.nodes=TRUE,color="dark blue",segment.color="lightgrey",alpha=0.\

10 5)
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Fig. 14g - Plotting via R



Chapter 15
Data Analysis

Data analysis is the process of evaluating the clean and transformed data using analytical and logical
reasoning to examine each component of the data. When analyzing data it is critical to ask where
the data comes from and how it was produced, obtained or collected. In particulas, the quality of the
data must be assessed before analysis. In any organization, processes that ensure accurate collection
and curation of data are described under data provenance.

Data analysis process is aptly summarized in figure 15a.

Fig. 15a - Data analysis process
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Exploring data through visualization

Categorical data

Categorical data can be summarized using tables and graphs. A summary table displays the
frequency, value or percentage for analysis. The summary function in R is used to get the summary
of given vector or dataframe. Table function can be used to find the frequency of data points.

1 > clinical.trial <-

2 + data.frame(patient = 1:100,

3 + age = rnorm(100, mean = 60, sd = 6),

4 + center = sample(paste("Center", LETTERS[1:5]), 100, replace = TRUE))

5

6 > summary(clinical.trial)

7 patient age center

8 Min. : 1.00 Min. :48.11 Center A:20

9 1st Qu.: 25.75 1st Qu.:55.50 Center B:22

10 Median : 50.50 Median :59.79 Center C:17

11 Mean : 50.50 Mean :60.09 Center D:19

12 3rd Qu.: 75.25 3rd Qu.:63.90 Center E:22

13 Max. :100.00 Max. :82.18

14

15 > table(clinical.trial$center)

16

17 Center A Center B Center C Center D Center E

18 20 22 17 19 22

Categorical data can be represented using bar charts or pie charts. A bar chart shows each category’s
frequency or percentage as the length of the bar. A pie chart shows the allocation of each category.

1 barplot(data,main="Clinical trials",xlab="centers",ylab="number of centers")
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Fig. 15b - Bar chart

1 data<-table(clinical.trial$center)

2 lbls <- paste(names(data), "\n", data, sep="")

3 pie(data,labels=lbls,main="Clinical trials")
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Fig. 15c - Pie chart

Numerical data

Visualization of numerical data can be done using different set of graphs: Histogram, Scatter plot,
Time series plot.

A histogram shows the frequency distribution in a bar graph format. Histograms are useful in
detecting the probability distribution function (cdf).

1 hist(AirPassengers)
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Fig. 15d - Histogram

Scatter plots helps visualize paired observations. It is useful for detecting correlations within data.

1 plot(cars)

2 # cars is the built-in dataset in R
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Fig. 15e - Scatter plot

A time series plot shows the pattern of change over time.

1 > Lines <- "Date Visits

2 + 10/1/2010 696537

3 + 10/2/2010 718748

4 + 10/3/2010 799355

5 + 10/4/2010 805800

6 + 10/5/2010 701262

7 + 10/6/2010 531579

8 + 10/7/2010 690068

9 + 10/8/2010 756947

10 + 10/9/2010 718757

11 + 10/10/2010 701768

12 + 10/11/2010 820113

13 + 10/12/2010 645259"

14

15 # reading the table

16 > dm <- read.table(text = Lines, header = TRUE)
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17 > dm$Date <- as.Date(dm$Date, "%m/%d/%Y")

18

19 #Plotting Visits vs Date

20 > plot(Visits ~ Date, dm, xaxt = "n", type = "l")

21 #xaxt help customized x axis using axis function.

22 > axis(1, dm$Date, format(dm$Date, "%b %d"), cex.axis = .7)

Fig. 15f - Time series plot
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Characterizing data through statistics

Statistics is a branch of mathematics that analyzes and transforms numeric data into useful
information for decision making and prediction.Statistics helps quantify uncertainty and aids in
rational prediction.

Statistics is broadly organized into descriptive and inferential methods:

1. Descriptive methods describe the properties of a data set, such as the mean (average) or the
maximum.

2. Inferential methods draw general conclusion from small samples and compare central
tendencies in multiple data sets.

Fig. 16a - Taxonomy of statistical methods
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Important terminologies related to statistics

1. Variable: a characteristic of an item or individual, e.g. salary, age, income, weight, experience.
2. Data: The different values associated with a variable, e.g. 168lbs, 203lbs.
3. Population: A large group that is to be measured.
4. Sample: A subset of a population that will be measured.
5. Parameter: A numerical measure that describes the characteristics of a population, e.g. mean.

Descriptive Statistics

Descriptive statistics describes the central tendency i.e. the extent to which the data values group
around a central value and variation i.e. the amount of dispersion or scattering of the data values.

There are three major measures of central tendency.

1. Mean: it is the average values of a set of data values.
2. Median: it is the middle value in an ordered list of values. If the number of values is even,

then the median is the average of the two middle values.
3. Mode: it is the value that occurs most frequently in the data set. The mode, unlike the mean,

is not affected by outliers.

In R we can use built-in functions to find mean and median but there is no straight-forward way to
find mode.

1 > x <- c(12,7,3,4.2,18,2,54,-21,8,-5,3)

2

3 > mean(x)

4 [1] 7.745455

5

6 > median(x)

7 [1] 4.2

8

9 > names(sort(-table(x)))[1] #Using the negative table function to find

10 #frequency and then sorting and picking up the first value.

11 [1] "3"

Variation can be measured by following measures.

1. Range: it is the difference between the smallest and the largest value.
2. Variance: it is the average of the squared deviations of the values from the mean.
3. Standard deviation: it is the square root of the variance and is the most commonly used

measure for dispersion around the mean. A smaller standard deviation indicates that the data
is more closely clustered around the mean, while a larger value implies more spread.
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1 > x <- c(12,7,3,4.2,18,2,54,-21,8,-5,3)

2 > max(x)

3 [1] 54

4 > min(x)

5 [1] -21

6 > var(x)

7 [1] 334.2727

8 > sd(x)

9 [1] 18.28313

Outliers

Outliers are the extreme values that can skew the analysis of data. Values that are more than
3 standard deviations from the mean are generally considered outliers. Z-score is used to locate
outliers. The z-score is the number of standard deviations a data value is from the mean. Outliers
have a z-score of Ã‚ Â± 3.0.

1 > x <- c(12,7,3,4.2,18,2,54,-21,8,-5,3)

2 > scale(x)

3 [,1]

4 [1,] 0.23270338

5 [2,] -0.04077281

6 [3,] -0.25955377

7 [4,] -0.19391949

8 [5,] 0.56087482

9 [6,] -0.31424901

10 [7,] 2.52990344

11 [8,] -1.57223952

12 [9,] 0.01392242

13 [10,] -0.69711569

14 [11,] -0.25955377

15 attr(,"scaled:center")

16 [1] 7.745455

17 attr(,"scaled:scale")

18 [1] 18.28313

Inferential statistics

Statistical inference combines the methods of descriptive statistics with the theory of probability
to infer characteristics of a large population from a small sample. The sample must be selected
randomly and must be “large enough” to be statistically significant. Statistical significance means
that the characteristics of the sample are likely not due to chance or random error. In most sciences,
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a confidence level of 95% is generally accepted as statistically significant, i.e., we accept a 5%
probability of being wrong about our conclusion.

A sample is a small set of randomly selected representatives from a larger population. When it is
impossible (or very difficult) to measure a population, then select a sample and extrapolate results
for the population.

Standard error

The standard error of a sample is a measure of the sampling error and can be used to estimate the
standard deviation of a population. To find the standard error in R, “plotrix” package can be installed
to use the “std.error” function.

1 install.packages("plotrix")

2 library("plotrix")

3 x <- c(12,7,3,4.2,18,2,54,-21,8,-5,3)

4 std.error(x)

Random sample

Samples must be drawn randomly from population, which means that each element of the
population has the same probability of being included in the sample. Random samples are often
drawn through random events, such as assigning numeric identifiers to each element and selecting
a set of random numbers through a computer or a random number table.

sampling can be done in R using the function “sample()”

1 > sample(1:10)

2 [1] 8 3 10 6 2 9 4 1 5 7

3

4 > sample(1:100, size=10)

5 [1] 26 2 35 55 34 29 25 37 96 77

6

7 > sample(1:100, size=10, replace=T)

8 [1] 78 98 16 32 5 46 11 1 11 15

The sample function can be used to randomly select a small size sample from population. The replace
argument of sample function allows duplicate entities to be selected from population if turned on.

Correlation

A correlation is a relationship between two variables in which one variable changes in a quantifiable
way with another.
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For example, there are correlations between: * Weight and cholesterol level * Task completion time
and task complexity * Cursor positioning time and distance to target

The strength of a correlation is measured by the coefficient of correlation “R”. The value of R ranges
from -1 to +1.

• Positive: as one variable increases, the other increases as well
• Negative: as one variable increases, the other decreases

An absolute value close to 1 is a strong correlation, whereas a value close to 0 indicates little to no
correlation.

In R, correlation can be find using function “cor()”.

1 > data<- "Sample IQ Spelling

2 + 1 115 34

3 + 2 87 18

4 + 3 104 28

5 + 4 121 26

6 + 5 96 19

7 + 6 99 20

8 + 7 136 26"

9

10 > dm <- read.table(text =data, header = TRUE)

11

12 > cor(dm$IQ,dm$Spelling)

13 [1] 0.6159423

Once a correlation has been established, the relationship can be mathematically quantified in a
formula through regression analysis which will be discussed further with forecasting.

Forecasting Trends

Forecasting refers to the process of using statistical procedures to predict future values of a time
series based on historical trends. Forecasting of demand, storage growth, resources, network traffic,
orders, and so forth is a key responsibility of an information scientist.

Forecasting Strategies:

1. Qualitative models
2. Time-Series models
3. Causal models
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Qualitative models incorporate expert opinions and subjective factors. These models are useful
when subjective factors are thought to be important or when accurate quantitative data is difficult
to obtain.

Common qualitative techniques are:

• Delphi (single and wideband)
• Expert Judgment
• Bottom-Up Composite
• Stakeholder Survey

Time-seriesmodels attempt to predict growth based on historical data. Common time-seriesmodels
are:

• Moving average
• Exponential smoothing
• Trend projections

R has a forecast package for moving average, exponential smoothing and trend projections.

Trend projections fits a trend curve to a series of historical data points. The curve is projected into
the future for medium to long range forecasts. In R, it is very easy to plot trend projections with
“decompose()” function on any time series data vector.

1 > class(AirPassengers)

2 [1] "ts" # time series class

3

4 > data<-decompose(AirPassengers)

5

6 > plot(data)
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Fig. 16b - Trend projection

Moving average estimates future values at time t by averaging values of the time series within k
periods of t. This method works best when the data does not contain any trend or cyclic patterns. In
R, “arima()” function (ARIthmetic Moving Average) of forecast package is used for predicting future
values.

1 > fit <- arima(AirPassengers, order=c(1,0,0), list(order=c(2,1,0), period=12))

2 #Creating a fit variable according to the dataset

3 > fore <- predict(fit, n.ahead=24)

4 #using the predict function on fitted values to predict future values.

5 #n.ahead is the number of steps ahead for which prediction is required

6

7 > # error bounds at 95% confidence level

8 > U <- fore$pred + 2*fore$se #upper confidence level

9 > L <- fore$pred - 2*fore$se #lower confidence level

10

11 > ts.plot(AirPassengers, fore$pred, U, L, col=c(1,2,4,4), lty = c(1,1,2,2))

12 #plotting time series data with legend

13 > legend("topleft", c("Actual", "Forecast", "Error Bounds (95% Confidence)"), co\

14 l=c(1,2,4), lty=c(1,1,2))
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Fig. 16c - Forecast using moving average method

Exponential smoothing is good when the data has no trend or seasonal patterns. Unlike a moving
average, this technique gives greater weight to the most recent observations of the time series. In R,
we use “ses()” function for simple exponential smoothing and “holt()” for holt-winters smoothing.

1 > data<-AirPassengers

2 > exp <- ses(data)

3 > plot(exp)
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Fig. 16d - Forecast using simple exponential smoothing method

Causal models take other factors into account and are often more accurate. The objective is to build
amodel with the best statistical relationship between the variable being forecast and the independent
variables. Regression analysis is the most common technique used in causal modeling.

Regression analysis is used to understand the relationship between variables and predict the value
of one variable based on another variable. Simple linear regression models have only two variables
whereas multiple regression models have more than two variables.

Regression attempts to fit a curve to a series of historical data points which is then used to make
predictions. The simplest is a linear (straight line) model developed using simple linear regression
analysis. Regression models are a mathematical equation used to predict a value based on empirical
observations. The prediction is never correct, but depending on the “fit of data” can be reasonably
good.

The variable to be predicted is called the dependent variable or the response variable. The value
of this variable depends on the value(s) of the independent variable(s) or the explanatory or the
predictor variable. Multiple regression models have several independent variables.

For regression to be useful, a correlation must exist between the independent and the dependent
variable. Correlation quantifies how well one variable’s values move in accordance with changes in
the other variable. Regression is an equation that mathematically captures how one variable changes
with the other.

The fit of the regression line is measured by the coefficient of determination (R²). The closer R² is to
1 the better the regression model fit and the more accurate the prediction.

Note- R² is one part of measuring the “quality” of a regression model: the other is
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statistical significance.

After the correlation between two variables are established and visualized using scatter plot,
relationship is mathmatically quantified in a formula using regression. The “lm()” function is used
in R to fit a linear model where the response variable is on the left separated by “∼” from the
explanatory variable. This linear model is saved as an object, named “regression.fit” in our example
in R log session. Using a summary() function on this linear model object gives us a lot of information
like intercept, slope of relationship, standard errors, R² etc.

1 > regression.fit<-lm(speed~dist,data=cars)

2

3 plot(speed ~ dist, data = cars,

4 xlab = "Stopping distance (ft)",

5 ylab = "Speed (mph)",

6 main = "Speed and Stopping Distances of Cars"

7 )

8

9 abline(regression.fit,col="red")

Fig. 16e - Regression plot
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1 > summary(regression.fit)

2

3 Call:

4 lm(formula = speed ~ dist, data = cars)

5

6 Residuals:

7 Min 1Q Median 3Q Max

8 -7.5293 -2.1550 0.3615 2.4377 6.4179

9

10 Coefficients:

11 Estimate Std. Error t value Pr(>|t|)

12 (Intercept) 8.28391 0.87438 9.474 1.44e-12 ***

13 dist 0.16557 0.01749 9.464 1.49e-12 ***

14 ---

15 Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

16

17 Residual standard error: 3.156 on 48 degrees of freedom

18 Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438

19 F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12

Plotting this linear model object gives a set of 4 graphs namely: Residuals vs Fitted graph, Normal
Q-Q plot, Scale-Location graph and Residuals vs Leverage graph.

1 par(mfrow=c(2,2))

2 plot(regression.fit)
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Fig. 16f - Linear model regression plots

In the first plot of residual errors vs fitted values, points that tend towards being outliers are labeled.
If any pattern is apparent in the points on this plot, then the linear model may not be the appropriate
one. Second and third graph of Q-Q plot and Scale-Location plot helps us determine whether our
residual errors are normally distributed or not. Last plot of Residuals vs Leverage helps us identify
the cases having undue influence on the regression relationship and needs further investigation.

Similar to linear regression, multiple regression analysis is also very straight-forward in R. With
the “lm()” function, one can add the independent variables separated by “+” sign. For example in an
imaginary dataset of speed with distance and time regression analysis can be done as shown in R
log session below.

1 > regression.fit<-lm(speed~dist+time,data=imaginaryDataset)
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Validating data through hypothesis testing

Once data collection is completed and basic decriptive statistics functions are performed on dataset,
we use the appropriate statistical test to see if there’s a statistically significant different between the
performance or error rate between the groups.

The first step of performing any statistical testing is to determine if the data is normally distributed
or not. One way to find out the normal distribution is by plotting Q-Q plot as discussed in chapter
16. To determine the normal distribution mathematically instead of visually we use Shapiro-wilk
normality test. Based on whether the data is normally distributed or not, appropriate statistical
testing can be done.

• Student’s t-test if the data is normally distributed.
• Kruskal-Wallis or Mann-Witney test of the data is not normally distributed.

Hypothesis

A hypothesis is a research statement. There are two types of hypothesis:

• Null hypothesis
• Alternate hypothesis

Null hypothesis states that there is no significant difference between specified populations, any
observed difference being due to sampling or experimental error. Statistical tests determine the
probability that the null hypothesis is not true, which means that we must accept the alternate
hypothesis. The accepted probability is generally 0.05. So if p < 0.05 the difference is statistically
significant.

To test if a hypothesis is true, following steps are taken:

• State the null hypothesis
• Perform an appropriate statistical test
• Evaluate the probability that the null hypothesis is true and either accept it or reject it

There are different types of statistical tests. All the statistical tests cannot be covered in this book.

• “t-test” tests if the mean between two samples is different.
• “Chi-squared test” tests if proportions of a binary variable between two samples are different.
• “ANOVA” tests if two or more factors influence the difference between two samples
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p-value

The p-value characterizes the probability that the null hypothesis is true. If this value is less than
5% (0.05), then we conclude that the null hypothesis is too unlikely to be true, which means that
the alternate hypothesis must be true. The p-value level of 0.05 is an agreed upon level and differs
between different research domains.

Example Analysis

A user experience design team is trying to decide which sales order web page is more effective. They
have collected data through focus groups that asked groups of users to attempt an ordering use case
for both interfaces. Each invited user performed both tasks. The data is reported in matching pairs,
i.e., each subject first performed the task using version A of the design, then version B. To reduce
the likelihood of task dependency, subjects should be given one design at random before the other
design.

1 > data<-"VersionA VersionB

2 + 22 22

3 + 24 34

4 + 34 45

5 + 18 43

6 + 22 31

7 + 39 38

8 + 32 45

9 + 28 32

10 + 31 38

11 + 41 29

12 + 38 41

13 + 29 58"

14 > dm <- read.table(text =data, header = TRUE)

15 > dm

16 VersionA VersionB

17 1 22 22

18 2 24 34

19 3 34 45

20 4 18 43

21 5 22 31

22 6 39 38

23 7 32 45

24 8 28 32

25 9 31 38

26 10 41 29

27 11 38 41
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28 12 29 58

29

30 > mean(dm$VersionA)

31 [1] 29.83333

32 > mean(dm$VersionB)

33 [1] 38

Null Hypothesis: “There is no difference in average task completion time between the two page
designs.”

Testing approach: We need to evaluate the difference between means of two samples, so a t-test
or a one-way ANOVA are useful. We must first check if the data is reasonably normally distributed
in order to use these tests. If they are not, then a non-parametric test, such as a Kruskal-Wallis test
must be used.

Step 1: Perform Shapiro-wilk normality test.

In Shapiro-wilk normality test, null hypothesis states that data is normally distributed. In R log
session below, p-value is greater than 0.05 that means null hypothesis is accepted and hence we can
say that the data is normally distributed.

1 > shapiro.test(dm$VersionA)

2

3 Shapiro-Wilk normality test

4

5 data: dm$VersionA

6 W = 0.9619, p-value = 0.8099

7

8 > shapiro.test(dm$VersionB)

9

10 Shapiro-Wilk normality test

11

12 data: dm$VersionB

13 W = 0.9721, p-value = 0.9312

Step 2: Perform student’s t-test
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1 > t.test(dm$VersionA,dm$VersionB, var.equal=TRUE, paired=FALSE)

2

3 Two Sample t-test

4

5 data: dm$VersionA and dm$VersionB

6 t = -2.3683, df = 22, p-value = 0.02708

7 alternative hypothesis: true difference in means is not equal to 0

8 95 percent confidence interval:

9 -15.318196 -1.015137

10 sample estimates:

11 mean of x mean of y

12 29.83333 38.00000

The p-value in the above R log session is below the threshold of 0.05, therefore we conclude that the
likelihood of the null hypothesis to be true to be too low. Therefore we must accept the alternate
hypothesis i.e. Version A of the web page design is faster as it has a mean completion time that is
statistically significantly lower than version B.

T-test can be of two types: two-tailed or one tailed. A two-tailed test is used whenever the result is
interesting regardless of direction. For Example: Two versions of a web page are compared for task
completion efficiency. A two-tailed test would be used if we don’t care if version A is faster than B
or vice versa as mentioned in our example scenario.

Type I and Type II errors

Type I Error is an error in judgment when you declare that there’s a difference when there really
isn’t i.e. a false rejection of the null hypothesis. Type II Error is an error in judgment when you
declare that there’s no difference when there really is i.e. a false acceptance of the null hypothesis.

Non-Parametric tests

When the data is not normally distributed, then a non-parametric equivalent of a test must be used.
The Kruskal-Wallis test is a non-parametric equivalent of the t-test. Non-parametric tests are more
likely to lead to Type II errors.

Example- Problem - Test if the monthly ozone density in New York has identical data distributions
from May to September 1973 using the built-in R dataset named “airquality”.

Again the first step remains the same to find out whether the data is normally distributed or not.
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1 > shapiro.test(airquality$Ozone)

2

3 Shapiro-Wilk normality test

4

5 data: airquality$Ozone

6 W = 0.8787, p-value = 2.79e-08

The p-value in the above R log session is less than 0.05 and hence we fail to accept the null hypothesis
of normal distribution and we conclude that this data is not normally distributed.

Based on the the problem statement our null hypothesis will be - “Monthly ozone density in New
York has identical data distributions”. Now to address the above problem, Kruskal wallis test is
performed.

1 > kruskal.test(Ozone ~ Month, data = airquality)

2

3 Kruskal-Wallis rank sum test

4

5 data: Ozone by Month

6 Kruskal-Wallis chi-squared = 29.2666, df = 4, p-value =

7 6.901e-06

The p-value in the above R log session is less than 0.05 and hence we fail to accept the null hypothesis
of identical data distributions of Ozone density in New York.
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