o

ple,

nes

de

Chapter 3

As instance-based learners do not build a model, the method is said to be in a class
of non-parametric learning methods —no parameters are learned about the data.
Without generating theories about the underlying data, non-parametric methods
limit our ability to understand how the classifier is using the data. On the other hand,
this allows the learner to find natural patterns rather than trying to fit the data into a
preconceived and potentially biased functional form.

I know a vegetable
when | taste onel

Although k-NN classifiers may be considered lazy, they are still quite powerful. As
you will soon see, the simple principles of nearest neighbor learning can be used to

if it has a seed, it
must be a fruit,

That tastes like
a vegetable.

No, a tomato is a fruit
by definition!

automate the process of screening for cancer.

Example — diagnosing breast cancer with
the k-NN algorithm

Routine breast cancer screening allows the disease to be diagnosed and treated prior
to it causing noticeable symptoms. The process of early detection involves examining
the breast tissue for abnormal lumps or masses. If a lump is found, a fine-needle
aspiration biopsy is performed, which uses a hollow needle to extract a small sample
of cells from the mass. A clinician then examines the cells under a microscope to
determine whether the mass is likely to be malignant or benign.

If machine learning could automate the identification of cancerous cells, it would
provide considerable benefit to the health system. Automated processes are likely

to improve the efficiency of the detection process, allowing physicians to spend less
time diagnosing and more time treating the disease. An automated screening system
might also provide greater detection accuracy by removing the inherently subjective
human component from the process.

We will investigate the utility of machine learning for detecting cancer by applying
the k-NN algorithm to measurements of biopsied cells from women with abnormal
breast masses.

|

i

Lazy Learning ~ Classification Using Nearest Neighbors

Step 1 - collecting data

We will utilize the Wisconsin Breast Cancer Diagnostic dataset from the UCI
Machine Learning Repository at http: //archive . ics.uci. edu/ml. This data
was donated by researchers of the University of Wisconsin and includes the
measurements from digitized images of fine-needle aspirate of a breast mass. The
values represent the characteristics of the cell nuclei present in the digital image.

¢ Toread more about this dataset, refer to: Mangasarian OL, Street
WN, Wolberg WH. Breast cancer diagnosis and prognosis via
linear programming. Operations Research. 1995; 43:570-577.
The breast cancer data includes 569 examples of cancer biopsies, each with
32 features. One feature is an identification number, another is the cancer diagnosis
and 30 are numeric-valued laboratory measurements. The diagnosis is coded as
"M" to indicate malignant or "B" to indicate benign.

7

The other 30 numeric measurements comprise the mean, standard error, and worst
(that is, largest) value for 10 different characteristics of the digitized cell nuclei.
These include:

* Radius

* Texture

* Perimeter

* Area

* Smoothness

* Compactness

* Concavity

* Concave points

* Symmetry

* Fractal dimension
Based on these names, all the features seem to relate to the shape and size of the cell
nuclei. Unless you are an oncologist, you are unlikely to know how each relates to

benign or malignant masses. These patterns will be revealed as we continue in the
machine learning process.

= oea

A A n

Bad

- ex

Chapter 3

Step 2 — exploring and preparing the data
Let's explore the data and see whether we can shine some light on the relationships.
In doing so, we will prepare the data for use with the k-NN learning method.

bl

If you plan on following along, download the wisc_bc_data.csv
M file from the Packt website and save it to your R working directory.
Q The dataset was modified very slightly from its original form for this
book. In particular, a header line was added and the rows of data
were randomly ordered.

Sl

Rl]

We'll begin by importing the CSV data file, as we have done in previous chapters,
saving the Wisconsin breast cancer data to the wbcd data frame:

> wbed <- read.csv("wisc_bc_data.csv", stringsAsFactors = FALSE)

Using the str (wbed) command, we can confirm that the data is structured with
569 examples and 32 features as we expected. The first several lines of output
are as follows: :

1data.frame': 569 obs. of 32 variables:
$ id : int 87139402 8910251 905520 ...

$ diagnosis : chr ©"B" "B" "B" "B" ...

$ radius_mean : num 12.3 10.6 11 11.3 15.2 ...
$ texture mean : num 12.4 18.9 16.8 13.4 13.2 ...
$

$

perimeter mean : num 78.8 69.3 70.9 73 97.7 .
area_mean : num 464 346 373 385 712 ...

The first variable is an integer variable named id. As this is simply a unique
identifier (ID) for each patient in the data, it does not provide useful information,
and we will need to exclude it from the model.

Regardless of the machine learning method, ID variables should always
Ky be excluded. Neglecting to do so can lead to erroneous findings because
Q the ID can be used to uniquely "predict" each example. Therefore, a
model that includes an identifier will suffer from overfitting, and is
unlikely to generalize well to other data.

ewdl

—

.
e — L N e
.- e —— -

Let's drop the id feature altogether. As it is located in the first column, we can
exclude it by making a copy of the wbcd data frame without column 1:

> wbed <- wbcd[-1]

r

y——

v ——

Lazy Learning - Classification Using Nearest Neighbors B

The next variable, diagnosis, is of particular interest as it is the outcome we 8
hope to predict. This feature indicates whether the example is from a benign g
or malignant mass. The table () output indicates that 357 masses are benign S

while 212 are malignant:

> table(wbcd$diagnosis)
B M

357 212

Many R machine learning classifiers require that the target feature is coded as a
factor, so we will need to recode the diagnosis variable. We will also take this
opportunity to give the "8 and "M* values more informative labels using the

labels parameter;
> wbcd$diagnosis<- factor (wbed$diagnosis, levels = c("B", wMw),

labels = c("Benign*®, "Malignant"))

Now, when we look at the prop. table () dutput, we notice that the values have
been labeled Benign and Malignant with 62.7 percent and 37.3 percent of the
masses, respectively:

> round(prop.table(table(wbcdsdiagnosis)) * 100, digits = 1)
Benign Malignant
62.7 37.3

The remaining 30 features are all numeric, and as expected, they consist of three
different measurements of ten characteristics. For illustrative purposes, we will
only take a closer look at three of these features:
> summary (wbed([c ("radius mean", "area_mean", " smoothness mean")])
radius mean area mean smoothness mean

Min. : 6.981 Min. : 143.5 Min. :0.05263

1st Qu.:11.700 1st Qu.: 420.3 1st Qu.:0.08637

Median :13.370 Median : 551.1 Median :0.09587

Mean :14.127 Mean : 654.9 Mean :0.0963€
3rd Qu.:15.780 3rd Qu.: 782.7 3rd Qu.:0.10530
Max. :28.110 Max. :2501.0 Max. :0.16340

(oo I = RE I o

i

an

v < B8 = Lo

-2l N

< o D U

R) D ed

C%apwrS

Looking at the features side-by-side, do you notice anything problematic about the
values? Recall that the distance calculation for k-NN is heavily dependent upon
the measurement scale of the input features. Since smoothness ranges from 0.05 to
0.16 and area ranges from 143. 5 to 2501 . 0, the impact of area is going to be much
larger than the smoothness in the distance calculation. This could potentially cause
problems for our classifier, so let's apply normalization to rescale the features to a
standard range of values.

Transformation — normalizing numeric data
To normalize these features, we need to create a normalize () function in R. This
function takes a vector x of numeric values, and for each value in x, subtracts the

minimum value in x and divides by the range of values in . Finally, the resulting
vector is returned. The code for this function is as follows:

> normalize <- function(x) {

return ((x - min(x)) / (max(x) - min(x)))

}

After executing the preceding code, the normalize () function is available for use in
R. Let's test the function on a couple of vectors:

> normalize(c(1l, 2, 3, 4, 5))
[1] 0.00 0.25 0.50 0.75 1.00
> normalize(c (10, 20, 30, 40, 50))
[11 0.00 0.25 0.50 0.75 1.00

The function appears to be working correctly. Despite the fact that the values in the
second vector are 10 times larger than the first vector, after normalization, they both
appear exactly the same.

We can now apply the normalize () function to the numeric features in our data
frame. Rather than normalizing each of the 30 numeric variables individually, we
will use one of R's functions to automate the process.

The lapply () function takes a list and applies a specified function to each list
element. As a data frame is a list of equal-length vectors, we can use lapply () to
apply normalize () to each feature in the data frame. The final step is to convert the
list returned by lapply() to a data frame, using the as.data. frame () function. The
full process looks like this:

> wbed n <- as.data.frame(lapply(wbcd[2:31], normalize))

Lazy Learning - Classification Using Nearest Neighbors

In plain English, this command applies the normalize () functon to columns

2 through 31 in the wbed data frame, converts the resulting list to a data frame,
and assigns it the name wbed n. The _n suffix is used here as a reminder that the
values in wbcd have been normalized.

To confirm that the transformation was applied correctly, let's look at one variable's
summary statistics:

> summary (wbcd_n$area mean)

Min. 1st Qu.Median Mean 3rd Qu. Max.

0.0000 0.1174 0.1729 0.2169 0.2711 1.0000

As expected, the area_mean variable, which originally ranged from 143.5 to 2501.0,
now ranges from 0 to 1.

Data preparation - creating training and test

datasets

Although all the 569 biopsies are labeled with a benign or malignant status, it is not
very interesting to predict what we already know. Additionally, any performance

measures we obtain during the training may be misleading as we do not know the
extent to which cases have been overfitted or how well the learner will generalize

to unseen cases. A more interesting question is how well our learner performs on

a dataset of unlabeled data. If we had access to a laboratory, we could apply our
learner to the measurements taken from the next 100 masses of unknown cancer
status, and see how well the machine learner's predictions compare to the diagnoses
obtained using conventional methods.

In the absence of such data, we can simulate this scenario by dividing our data into
two portions: a training dataset that will be used to build the k-NN model and a test
dataset that will be used to estimate the predictive accuracy of the model. We will
use the first 469 records for the training dataset and the remaining 100 to simulate
new patients.

Using the data extraction methods given in Chapter 2, Managing and Understanding
Data, we will split the wbed_n data frame into wbed train and wbcd test:

> wbed_train <- wbed nll1:469,]

> wbed_test <- wbed n[470:569,]

Chapter 3

If the preceding commands are confusing, remember that data is extracted from data
frames using the [row, column] syntax. A blank value for the row or column value
indicates that all the rows or columns should be included. Hence, the first line of
code takes rows 1 to 469 and all columns, and the second line takes 100 rows from
470 to 569 and all columns.

r When constructing training and test datasets, it is important that each
dataset is a representative subset of the full set of data, The wbed
N records were already randomly ordered, so we could simply extract
~ 100 consecutive records to create a test dataset. This would not be
Q -appropriate if the data was ordered chronologically or in groups of
similar values. In these cases, random sampling methods would be
needed. Random sampling will be discussed in Chapter 5, Divide and
L. Conquer ~ Classification Using Decision Trees and Rules. n

When we constructed our normalized training and test datasets, we excluded the
target variable, diagnosis. For training the k-NN model, we will need to store
these class labels in factor vectors, split between the training and test datasets:

> wbed _train labels <- wbed[1:469, 1]
> wbed test labels «- wbed [470:569, 1)

This code takes the diagnosis factor in the first column of the wbcd data frame, and
creates the vectors wbed_train labels and wbcd_test_labels. We will use these
in the next steps of training and evaluating our classifier.

Step 3 — training a model on the data

Equipped with our training data and labels vector, we are now ready to classify our
unknown records. For the k-NN algorithm, the training phase actually involves no

model building; the process of tra g a lazy learner like k-NN simply involves
storing the input data in a structured format. ‘

To classify our test instances, we will use a k-NN implementation from the class
package, which provides a set of basic R functions for classification. If this package
is not already installed on your system; you can install it by typing:

> install.packages("class“)

To load the package during any session in which you wish to use the functions,
simply enter the library (class) command.

package provides a standard, classjc
tation of the k-NN algorithm. For each instance in the test data, the
function will identify the k-Nearest Neighbors, using Euclidean distance, where k is
a user-specified number. The test instance is classified by taking a "vote" among the
k-Nearest Neighbors — specifically, this involves assigning the class of the majority of
the k neighbors. A tie vote is broken at random.

' There are several other k-NN functions in other R packages,
~ which provide more sophisticated or more efficient
Q implementations. If you run into limits with knn (), search for
k-NN at the Comprehensive R Archive Network (CRAN).

Training and classification using the knn () function is performed in a single function
call, using four parameters, as shown in the following table:

usixi:g the knn ()' function in thé class package

Buliding the classifier and making predictions:
P <- knn(train, test, class, k)

* trainisadataframe containing numeric training data

¢ testisadataframe containing numeric test data

* class is afactor vector with the class for each row in the training data
* Kkisaninteger indicating the number of nearest neighbors

The function returns a factor vector of predicted classes for each row in the test data
frame.

wbcd_pred <- knn(train = wbcd_train, test = wbed_test,
cl = wbcd_train_'labe‘ls, k = 3)

to include in the vote,

As our training data includes 469 instances, we might fry k = 21, an odd number
roughly equal to the square root of 469. With a two-category outcome, using an odd
number eliminates the chance of ending with a tie vote.

T —emm———————— [82] -

Chapter 3

Now we can use the knn () function to classify the test data:

> wbed_test pred <- knn(train = wbcd_train, test = wbed test,
cl = wbed train labels, k = 21)

The knn () function returns a factor vector of predicted labels for each of the
examples in the test dataset, which we have assigned to wbcd_test_pred.

Step 4 — evaluating model performance

The next step of the process is to evaluate how well the predicted classes in the wbcd_
test_pred vector match up with the known values in the wbcd_test_labels vector.
To do this, we can use the CrossTable () function in the gmodels package, which
was introduced in Chapter 2, Managing and Understanding Data. If you haven't done
so already, please install this package, using the install.packages ("gmodels")
command.

After loading the package with the 1ibrary (gmodels) command, we can

create a cross tabulation indicating the agreement between the two vectors.

Specifying prop.chisq = FALSE will remove the unnecessary chi-square

values from the output:

> CrossTable(x = wbcd test_labels, y = wbed test pred,
prop.chisg=FALSE)

The resulting table looks like this:

wbed_test_pred
Benign | Malignant

Lazy Learning — Classification Using Nearest Neighbors

The cell percentages in the table indicate the proportion of values that fall into four

- categories. The top-left cell indicates the true negative results. These 61 of 100 values
d the k-NN algorithm correctly identified it
the true positive results, where the classifier
e that the mass is malignant. A total of 37 of

100 predictions were true positives.

The cells falling on the other diagonal contain counts of examples where the k-NN
approach disagreed with the true label. The two examples in the lower-left cell are
false negative results; in this case, the predicted value was benign, but the tumor
Wwas actually malignant. Errors in this direction could be extremely costly as they
might lead a patient to believe that she is cancer-free, but in reality, the disease may
-right cell would contain the false positive results, if
es occur when the model classifies

tests or treatment may have to be provided.

B If we desired, we could totally eliminate false negatives by

classifying every mass as malignant. Obviously, this is not a realistic
\! strategy. Still, it illustrates the fact that prediction involves striking
~ a balance between the false positive rate and the false hegative rate,
Q In Chapter 10, Evaluating Model Performance, you will learn more
sophisticated methods for measuring predictive accuracy that can
be used to identify places where the error rate can be optimized
o depending on the costs of each type of error. 4

Step 5 - improving model performance

We will attempt two simple variations on our previous classifier. First, we will
employ an alternative method for rescaling our numeric features, Second, we
will try several different values for k.

Chapter 3

Transformation — z-score standardization

Although normalization is traditionally used for k-NN classification, it may

not always be the most appropriate way to rescale features, Since the z-score
standardized values have no predefined minimum and maximum, extreme values
are not compressed towards the center. One might suspect that with a malignant
tumor, we might see some very extreme outliers as the tumors grow uncontrollably.
It might, therefore, be reasonable to allow the outliers to be weighted more heavily in
the distance calculation. Let's see whether z-score standardization can improve our
predictive accuracy.

To standardize a vector, we can use the R's built-in scale () function, which, by
default, rescales values using the z-score standardization. The scale () function
offers the additional benefit that it can be applied directly to a data frame, so we can
avoid the use of the lapply () function. To create a z-score standardized version of
the wbed data, we can use the following command:

> wbed z <- as.data.frame(scale(wbcd[-11))

This command rescales all the features, with the exception of diagnosis and stores
the result as the wbcd_z data frame. The _z suffix is a reminder that the values were
z-score transformed. '

To confirm that the transformation was applied correctly, we can look at the
summary statistics:

> summary (wbcd_z$area_mean)
Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.4530 -0.6666 -0.2949 0.0000 0.3632 5.2460

The mean of a z-score standardized variable should always be zero, and the range
should be fairly compact. A z-score greater than 3 or less than -3 indicates an
extremely rare value. With this in mind, the transformation seems to have worked.

As we had done earlier, we need to divide the data into training and test sets, and
then classify the test instances using the knn () function. We'll then compare the
predicted labels to the actual labels using crossTable ():

> wbed train <- wbed z[1:469,]

> wbed test <- wbcd z[470:569,]

> wbced _train labels <- wbed[1:469, 1]
> wbed test_labels <- wbed[470:569, 1]

Lazy Learning - Classification Using Nearest Neighbors

> wbed test pred <- knn(train = wbed _train, test = wbed test,
cl = wbed_train labels, k = 21)

> CrossTable(x = wbed test_labels, y = wbed_test pred,
pProp.chisqg = FALSE)

Unfortunately, in the following table, the results of our new transformation show a
slight decline in accuracy. The instances where we had correctly classified 98 percent
of examples previously, we classified only 95 percent correctly this time. Making
matters worse, we did no better at classifying the dangerous false negatives:

wbcd_test_pred
wbcd_test_labels Benign | Malignant

l
!
I
J
I
J
|

examining performance across various k values.
nd test datasets, the same 100 records were classified

shown for each iteration:

k value ' False negatives ' False positives r_Percent classified inéorrectly
1 ’ 3 4 percent

5 2 percent

11 [3 percent
L 15 3 percent

21 2 percent
27 ‘ 4 percent

Chapter 3

Although the classifier was never perfect, the 1-NN approach was able to avoig
some of the false negatives at the expense of adding false positives. It is important to
keep in mind, however, that it would be unwise to tajlor our approach too closely to
our test data; after all, a different set of 100 patient records is likely to be somewhat
different from those used to Ineasure our performance, -

9

about classification using k-NN. Unlike many
-NN does not do any learning. It simply stores the training
test examples are then matched to the most similar records
and the unlabeled example is assigned

extremely complex tasks,
simple lines of R code, we were able to correctly id
malignant or benign 98 percent of the time.

